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Abstract
We define a twin prime pair (p, q) of primes p, q if q − p = 2. We call q an upper

twin prime. Then we prove,

∗
∑µ(d1d2) [

N − x1
d1d2

]

is the exact count of the number of upper twin primes in the interval (pθ,N) with N

in the interval pθ < N ≤ p2θ+1. The variables and the sum symbol
∗
∑ mean,

1. N is an even natural number greater than 32.

2. pθ is the largest prime less than
√
N,

3. pθ+1 is the next largest prime,

4. [x] is the greatest integer function,

5. d1 is the product of one or more elements of the set {2,3, . . . , pθ} ∪ {1}, where
2,3,5, . . . , pθ are consecutive primes.

6. d2 is the product of one or more elements of the set {3,5 . . . , pθ} ∪ {1} where
3,5, . . . , pθ are consecutive primes That is gcd(d2,2) = 1 or 2 ∤ d2.

7. gcd(d1, d2) = 1.

8. The sum is over all possible values of d1 and d2.

9. µ(d) is the Möbius function.

10. x1 is the least non-negative solution of the system of simultaneous linear con-
gruences,

x ≡ 0(mod d1), x ≡ 2(mod d2)

This formula also counts the number 1 so we need to make that correction.

Using the formula we then prove there are an infinite number of twin prime pairs.
We do this by assuming there is a greatest twin prime pair and then obtaining a
contradiction.
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Chapter 1

Setting up and Heuristic Evidence

1.1 The Primod-pθ Number System

Notation 1. The symbol pθ means the prime number θ in order of magnitude. For
example, p5 is the 5th prime number, namely 11.

The Primod−pθ number system, with pθ any prime number, is based on a different
concept to decimal and binary number systems. The primod number, or simply
primod, of a positive integer n is written as a b c d . . . where it is assumed the
consecutive prime numbers 2,3,5,7, . . . , pθ are written from left to right across the top
of each digit which is calculated as the least non-negative value of x ≡ n( mod p) where
p ≤ pθ is the relevant prime. The term primod has been chosen as the abbreviated
combination of prime and modulus since each digit is calculated from the least non-
negative modulus of the integer to the respective prime.

Example 1. In the Primod-11 number system, the primod 1 2 4 6 9 is interpreted
as:

2 3 5 7 11
1 2 4 6 9

or the least non-negative (lnn) integer x that satisfies the system of simultaneous
congruences :

x ≡ 1(mod 2), x ≡ 2(mod 3), x ≡ 4(mod 5), x ≡ 6(mod 7), x ≡ 9(mod 11)

or 2099 in decimal notation.

We shall refer to the digits of a primod as p-digits, e.g., the 2-digit of the primod
of the integer 5 is 1 and its 3-digit is 2. We note that the p-digit of any integer is one
of {0,1, . . . , p − 1}. Thus the p−digits of 5 can only be one of {0,1,2,3,4}.

To get a better sense of the primod number system, let’s consider the Primod-11
number system, the set of primods of the integers n such that 1 ≤ n ≤ 2×3×5×7×11.

4



1.2. Notation and Definitions 5

There are 2310 primods in this set. The primods of integers 1-171 are given in Table
1 below. The simple test for a number to be a prime is to show it is not divisible by
any prime less than its square root. Hence the shaded integers in Table 1 with no
0-digits that are less than 169 = 132, and not just 121 = 112, are all primes.
In general in the Primod-pθ number system all integers less than p2θ+1 with no zero
p−digits are all primes, pθ+1 being the next largest prime to pθ.
The numbers 2,3,5,7,11 that “define” the Primod-11 number system are excluded
since they all have a zero digit occasioned by p ≡ 0(mod p). They are, however,
primes. We call them the sieving primes.

1.2 Notation and Definitions

Notation 2. T (pθ,N,M)

With reference to the Primod-pθ number system, if N is any positive integer and M
any non-negative even integer, T (pθ,N,M) will denote the number of non-negative
integers less than N with primods satisfying the condition that none of their p-digits
is either 0 or the same as the corresponding p-digit of the primod of the integer M.

Definition 1. Twin primes
If q1, q2 are primes such that q2 − q1 = 2 then we say (q2, q1) is a twin prime pair. We
say such a q2 is an upper twin prime.

Our first goal is to develop a formula for counting the number of upper twin primes
in a given interval.

1.3 Primods with no p-digit equal to 0 or 2(mod p)

Let us now consider, still for the primod-11 number system and referencing Table 1,
primods with no p-digit equal to either 0 or 2, with p ∈ {2,3,5,7,11}. We shall denote
these as the allowable primods.
The respective integers are among those highlighted in Table 1 and are the sets,

{1} ∪ {19,31,43,61,73,103,109,139,151}

The single element in the first set is the number 1 which is not a prime. The second
set consists of the primods of integers greater than 2. The elements are the primods of
primes if the related integer is less than 169 and may or may not be primes otherwise.
Now the elements of the second set are the integers, q2, with allowable primods having
no p−digit equal to 0 or 2. Therefore the primod of the integer q1 such that q1 = q2−2
cannot contain any p−digits equal to 0 so q1 must be a prime and (q1, q2) is a twin
prime pair. For example 19 = 11458 and 19 − 2 = 12236 which is the primod of 17
which must be a prime and (17,19) a twin prime pair.
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2 3 5 7 11 2 3 5 7 11 2 3 5 7 11 2 3 5 7 11
43 1 1 3 1 10 86 0 2 1 2 9 129 1 0 4 3 8

1 1 1 1 1 1 44 0 2 4 2 0 87 1 0 2 3 10 130 0 1 0 4 9
2 0 2 2 2 2 45 1 0 0 3 1 88 0 1 3 4 0 131 1 2 1 5 10
3 1 0 3 3 3 46 0 1 1 4 2 89 1 2 4 5 1 132 0 0 2 6 0
4 0 1 4 4 4 47 1 2 2 5 3 90 0 0 0 6 2 133 1 1 3 0 1
5 1 2 0 5 5 48 0 0 3 6 4 91 1 1 1 0 3 134 0 2 4 1 2
6 0 0 1 6 6 49 1 1 4 0 5 92 0 2 2 1 4 135 1 0 0 2 3
7 1 1 2 0 7 50 0 2 0 1 6 93 1 0 3 2 5 136 0 1 1 3 4
8 0 2 3 1 8 51 1 0 1 2 7 94 0 1 4 3 6 137 1 2 2 4 5
9 1 0 4 2 9 52 0 1 2 3 8 95 1 2 0 4 7 138 0 0 3 5 6
10 0 1 0 3 10 53 1 2 3 4 9 96 0 0 1 5 8 139 1 1 4 6 7
11 1 2 1 4 0 54 0 0 4 5 10 97 1 1 2 6 9 140 0 2 0 0 8
12 0 0 2 5 1 55 1 1 0 6 0 98 0 2 3 0 10 141 1 0 1 1 9
13 1 1 3 6 2 56 0 2 1 0 1 99 1 0 4 1 0 142 0 1 2 2 10
14 0 2 4 0 3 57 1 0 2 1 2 100 0 1 0 2 1 143 1 2 3 3 0
15 1 0 0 1 4 58 0 1 3 2 3 101 1 2 1 3 2 144 0 0 4 4 1
16 0 1 1 2 5 59 1 2 4 3 4 102 0 0 2 4 3 145 1 1 0 5 2
17 1 2 2 3 6 60 0 0 0 4 5 103 1 1 3 5 4 146 0 2 1 6 3
18 0 0 3 4 7 61 1 1 1 5 6 104 0 2 4 6 5 147 1 0 2 0 4
19 1 1 4 5 8 62 0 2 2 6 7 105 1 0 0 0 6 148 0 1 3 1 5
20 0 2 0 6 9 63 1 0 3 0 8 106 0 1 1 1 7 149 1 2 4 2 6
21 1 0 1 0 10 64 0 1 4 1 9 107 1 2 2 2 8 150 0 0 0 3 7
22 0 1 2 1 0 65 1 2 0 2 10 108 0 0 3 3 9 151 1 1 1 4 8
23 1 2 3 2 1 66 0 0 1 3 0 109 1 1 4 4 10 152 0 2 2 5 9
24 0 0 4 3 2 67 1 1 2 4 1 110 0 2 0 5 0 153 1 0 3 6 10
25 1 1 0 4 3 68 0 2 3 5 2 111 1 0 1 6 1 154 0 1 4 0 0
26 0 2 1 5 4 69 1 0 4 6 3 112 0 1 2 0 2 155 1 2 0 1 1
27 1 0 2 6 5 70 0 1 0 0 4 113 1 2 3 1 3 156 0 0 1 2 2
28 0 1 3 0 6 71 1 2 1 1 5 114 0 0 4 2 4 157 1 1 2 3 3
29 1 2 4 1 7 72 0 0 2 2 6 115 1 1 0 3 5 158 0 2 3 4 4
30 0 0 0 2 8 73 1 1 3 3 7 116 0 2 1 4 6 159 1 0 4 5 5
31 1 1 1 3 9 74 0 2 4 4 8 117 1 0 2 5 7 160 0 1 0 6 6
32 0 2 2 4 10 75 1 0 0 5 9 118 0 1 3 6 8 161 1 2 1 0 7
33 1 0 3 5 0 76 0 1 1 6 10 119 1 2 4 0 9 162 0 0 2 1 8
34 0 1 4 6 1 77 1 2 2 0 0 120 0 0 0 1 10 163 1 1 3 2 9
35 1 2 0 0 2 78 0 0 3 1 1 121 1 1 1 2 0 164 0 2 4 3 10
36 0 0 1 1 3 79 1 1 4 2 2 122 0 2 2 3 1 165 1 0 0 4 0
37 1 1 2 2 4 80 0 2 0 3 3 123 1 0 3 4 2 166 0 1 1 5 1
38 0 2 3 3 5 81 1 0 1 4 4 124 0 1 4 5 3 167 1 2 2 6 2
39 1 0 4 4 6 82 0 1 2 5 5 125 1 2 0 6 4 168 0 0 3 0 3
40 0 1 0 5 7 83 1 2 3 6 6 126 0 0 1 0 5 169 1 1 4 1 4
41 1 2 1 6 8 84 0 0 4 0 7 127 1 1 2 1 6 170 0 2 0 2 5
42 0 0 2 0 9 85 1 1 0 1 8 128 0 2 3 2 7 171 1 0 1 3 6

Table 1
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Now if no p−digit can equal 0 or 2 then the 2−digit of any integer can only be 2−1 = 1
and each other p−digit can only have p − 2 values. There are therefore,

(2 − 1) × (3 − 2) × (5 − 2) × (7 − 2) × (11 − 2) = 135

allowable primods in the Primod-11 number system that satisfy the specified condi-
tions.
Then, we predict there are,

T (11,169,2) ≈
2 − 1

2
×

3 − 2

3
×

5 − 2

5
×

7 − 2

7
×

11 − 2

11
× 169 ≈ 10,

primods of integers less than 169 satisfying the given conditions.
This includes the primod of the number 1, assigned to the first set above. In the
second set, the primods of the integers greater than 2, we would therefore expect
about 9 primes between 11 and 168 that are the larger members of a twin prime pair.
There are exactly 9, namely,

19,31,43,61,73,103,109,139,151

In other words there are 9 twin prime pairs between 11 and 169 inclusive, namely,

(17,19), (29,31), (41,43), (59,61), (71,73), (101,103), (107,109), (137,139), (149,151)

The easy extension of the above to the general case is given by,

T (pθ,N,2) ≈
2 − 1

2
×

3 − 2

3
×

5 − 2

5
×

7 − 2

7
×

11 − 2

11
×⋯ ×

pθ − 2

pθ
×N

= (1 −
1

2
)

pθ

∏
p=3

(1 −
2

p
) ×N

If we choose N ∶ pθ < N < p2θ+1 where pθ and pθ+1 are successive primes, then
T (pθ,N,2) − 1 is the predicted number of twin prime pairs with the upper prime
greater than pθ and less than N. Since T (pθ,N,2) also counts the number 1, our goal
is to prove T (pθ,N,2) is always greater than 1.
Now, choosing N = p2θ,

T (pθ,N,2) ≈
1

2
×

1

3
×

3

5
×

5

7
×

9

11
×

15

17
⋯×

pθ − 2

pθ
×N

>
1

2
×

1

3
×

3

5
×

5

7
×

7

9
×

9

11
×

11

13
×⋯ ×

pθ − 4

pθ − 2
×
pθ − 2

pθ
× p2θ

>
pθ
2

This predicts there are always many more than
pθ
2

twin prime pairs between pθ and

N = p2θ where pθ is the largest prime less than
√
N.



Chapter 2

Counting Allowable Primods

2.1 Finding the Upper Twin Primes

Twin primes are pairs of primes q1, q2 satisfying q2 − q1 = 2. In the primod−pθ number
system, any prime q2 such that pθ < q2 < p2θ+1 is the upper twin of a twin prime pair
provided the primod of q2 has no p−digit equal to 2 for p ∈ {2,3, . . . , pθ}, since if any
p−digit of q2 equals 2, then the corresponding p-digit of q1 is 0, meaning q1 is not a
prime.
For example, the primod 1 1 2 5 8 may be the primod of a prime, having no zero
digits, but it cannot be the upper prime of a twin prime pair, since the lower member,
with primod 1 2 0 3 6 (after subtracting 2 from each p−digit,) has a 5−digit of 0 so
is divisible by 5.
Since T (pθ,N,2) counts only primods with no p−digit equal to 0 or 2 then, for
pθ ≤ N < p2θ+1, we have that T (pθ,N,2) is the count of the upper primes of all twin
prime pairs with upper primes less than N and greater than pθ.
We begin with finding the upper twin primes between 5 and 32.
Consider T (5,32,2) in the Primod−5 number system, which is the count of the pri-
mods of upper members of twin prime pairs between 5 and 32. To identify the integers
with allowable primods, we need to sieve out the integers with primods having any
digits equal to either 0 or 2. That means we need to sieve out the integers x of any
of the forms,

x ≡ 0(mod 2), x ≡ 0(mod 3), x ≡ 0(mod 5)

8
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x
/p

1
2

3
4

5
6

7
8

9
10

1
1

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2

3
3

3
3

3
3

3
3

3
3

3
3

5
5

5
5

5
5

5

A
1

7
11

13
17

19
23

29
31

3
’

3’
3’

3
’

3
’

3’
3’

3’
3’

3’
3’

3’

5
’

5’
5
’

5’
5’

5’
5’

5’

B
1

13
19

31

T
ab

le
2

as well as the numbers satisfying,

x ≡ 2(mod 2), x ≡ 2(mod 3), x ≡ 2(mod 5)

We first note that the integers satisfying x ≡ 0(mod 2) are the same as those sat-
isfying x ≡ 2(mod 2) so we need to remove one of these conditions to avoid double
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counting or deletions. We omit x ≡ 2(mod 2). Then the numbers we are deleting via
the sieve are:

x ≡ 0(mod 2) ∶ 2,2 + 2,2 + 2 + 2, . . .

x ≡ 0(mod 3) ∶ 3,3 + 3,3 + 3 + 3, . . .

x ≡ 0(mod 5) ∶ 5,5 + 5,5 + 5 + 5 . . .

x ≡ 2(mod 3) ∶ 2,2 + 3,2 + 3 + 3, . . .

x ≡ 2(mod 5) ∶ 2,2 + 5,2 + 5 + 5 . . .

A double Erasthosthenes type sieve can be set up to generate the allowable primods
with no p−digits equal to 0 or 2. In Table 2 above, the numbers 1 to 32 are placed
on the top row.
The first sieve, indicated by the numbers 2,3,5 in the first column removes all numbers
x such that,

x ≡ 0(mod 2), x ≡ 0(mod 3), x ≡ 0(mod5),

and we fill in each row with a “2” at 2,2+2,2+2+2,...Similarly for rows with 3 and 5.
This sieves out the number 1 as well as the integers between 1 and 32 with non-
allowable primods as indicated by the shaded squares on the A-row. We are left with
the set of primes between 5 and 32 as well as the number 1, namely

1,7,11,13,17,19,23,29,31

The second sieve, indicated by the numbers 3’ and 5’ in the first column, sieves out
all numbers x such that,

x ≡ 2(mod 3), namely 2,5,8,⋯

x ≡ 2(mod 5), namely 2,7,12,⋯

The numbers (which must also be primes) sieving through onto the bottom B-row
have primods with no p−digits equal to 0 or 2. With the exception of the num-
ber 1, they are the upper primes of the twin prime pairs between 5 and 32, namely
{13,19,31}.

2.2 Counting the Upper Twin Primes

Let us now count T (5,32,2) or the number of integers between 1 and 32 inclusive
with primods having no p−digit equal to 0 or 2, that is the number of upper twin
primes of a twin prime pair. We need Tables 3 and 4 below. Table 3 shows how we
set up the count.
We begin by taking a set of integers 1 to N such as 1 to 32 and noting 5 is the greatest
prime less than

√
32, so we have the sieving primes 2,3,5. For the top row of numbers
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in Table 3 we note x = 0 is the least non-negative solution of the pair of simultanious
congruences,

x ≡ 0(mod 1), x ≡ 2(mod 1)

and each other solution is obtained by simply repeatedy adding 1.
The counting argument is we delete according to the products (including the number
1) of an odd number of the sieving primes and we replace according to an even number.
Hence we delete all x ∈ {1,2,3 . . .32} where x ≡ 0(mod 2) but we express the first
deletion as the least non-negative solution to a pair of simultaneous congruences,
namely,

x ≡ 0(mod 2), x ≡ 2(mod 1)

Similarly we solve the systems,

x ≡ 0(mod 3), x ≡ 2(mod 1)

x ≡ 0(mod 5), x ≡ 2(mod 1)

x ≡ 2(mod 3), x ≡ 2(mod 1)

x ≡ 2(mod 5), x ≡ 2(mod 1)

The least non-negative solutions to these pairs of simultaneous congruences are given
in the x1 column of Table 3.
We are solving systems of the form x ≡ 0(mod d1), x ≡ 2(mod d2) with the values of
d1 and d2 given in the first two columns of Table 3.

We identify the locations of double deletions by solving,

x ≡ 0(mod 2), x ≡ 2(mod 3)

x ≡ 0(mod 2), x ≡ 2(mod 5)

x ≡ 0(mod 3), x ≡ 2(mod 5)

x ≡ 0(mod 5), x ≡ 2(mod 3)

But we also have double deletions with respect to,

1. x ≡ 0(mod 2), x ≡ 0(mod 3)⇔ x ≡ 0(mod 2 × 3), x ≡ 2(mod 1)

2. x ≡ 0(mod 2), x ≡ 0(mod 5)⇔ x ≡ 0(mod 2 × 5), x ≡ 2(mod 1)

3. x ≡ 0(mod 3), x ≡ 0(mod 5)⇔ x ≡ 0(mod 3 × 5), x ≡ 2(mod 1)

4. x ≡ 2(mod 3), x ≡ 2(mod 5)⇔ x ≡ 0(mod 3 × 5), x ≡ 2(mod 1)

In each of the above we replace a pair of simultaneous congruences with an equivalent
pair, so we are always solving systems of the form x ≡ 0(mod d1) and x ≡ 2(mod d2)
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d1 d2 System x1 d1d2
x ≡ 0(mod d1) x ≡ 2(mod d2)

1 1 x ≡ 0(mod 1) x ≡ 2(mod 1) 0 1
2 1 x ≡ 0(mod 2) x ≡ 2(mod 1) 0 2
3 1 x ≡ 0(mod 3) x ≡ 2(mod 1) 0 3
1 3 x ≡ 0(mod 1) x ≡ 2(mod 3) 2 3

2 × 3 1 x ≡ 0(mod 6) x ≡ 2(mod 1) 0 6
2 3 x ≡ 0(mod 2) x ≡ 2(mod 3) 2 6
5 1 x ≡ 0(mod 5) x ≡ 2(mod 1) 0 5
1 5 x ≡ 0(mod 1) x ≡ 2(mod 5) 2 5

2 × 5 1 x ≡ 0(mod 10) x ≡ 2(mod 1) 0 10
2 5 x ≡ 0(mod 2) x ≡ 2(mod 5) 2 10
3 5 x ≡ 0(mod 3) x ≡ 2(mod 5) 12 15
5 3 x ≡ 0(mod 5) x ≡ 2(mod 3) 5 15

2 × 3 5 x ≡ 0(mod 6) x ≡ 2(mod 5) 12 30
2 × 5 3 x ≡ 0(mod 10) x ≡ 2(mod 3) 20 30
3 × 5 1 x ≡ 0(mod 15) x ≡ 2(mod 1) 0 15

1 3 × 5 x ≡ 0(mod 1) x ≡ 2(mod 15) 2 15
2 × 3 × 5 1 x ≡ 0(mod 30) x ≡ 2(mod 1) 0 30

2 3 × 5 x ≡ 0(mod 2) x ≡ 2(mod 15) 2 30

Table 3

with the complete set of (d1, d2) values given in the first two columns of Table 3.
Finally we have deletions due to,

x ≡ 0(mod 2), x ≡ 0(mod 3), x ≡ 0(mod 5)⇔ x ≡ 0(mod 2 × 3 × 5), x ≡ 2(mod 1)

The least non-negative solution of these 18 pairs of simultaneous congruences are
given in the x1 column of Table 3.
We can summarize the above by saying we choose the product d1 of one or more
elements of the set {2,3,5} ∪ {1} and another product d2 of one or more elements of
the set {3,5}∪{1} with gcd(d1, d2) = 1. We then solve all possible pairs of simultaneous
congruences of the form,

x ≡ 0(mod d1), x ≡ 2(mod d2)

to find the values of x1.
We now consider Table 4 where the x1 and d1, d2 values have been transferred from
Table 3. We are dealing with the same value, N = 32 and the same sieving primes
{2,3,5}. Table 4 has been set up as two top lines and then four “quartets” each
formed from a unique choice of d1 and d2 from products of one of more numbers
chosen from {1,3,5} with gcd(d1, d2) = 1.
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1
1

T
a
b
le

4
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In each quartet we observe the rule that the product of an odd number of primes is
used for additions of +1′s and, in the same quartet the product of an even number of
primes is used for deletions via −1′s.
The method of inserting +1s and −1′s is to calculate the four values of x1 given
by solving x ≡ 0(mod d1) and x ≡ 2(mod d2) for each choice of d1 and d2 and to
insert a +1 at the positions x1, x1 + d1d2, x1 + 2d1d2, . . . where d1d2 is the product
of and odd number of primes for which we have additions and a −1 at the positions
x1, x1 + 2d1d2, x1 + 4d1d2, . . . where d1d2 is the product of an even number of primes
for which we have deletions.
The SR column gives the Sum of the ±1′s in each Row and its overall total in this
case is 4 which is the correct count of the number of upper twin primes between 5
and 32 as well as the number 1.
Utilizing the Möbius function we can conjecture that the number of +1’s or -1’s in

each row is given by µ(d1d2) [
32 − x1
d1d2

] and these results are shown in the column

headed µ(d1d2) [
32 − x1
d1d2

] .

We note that the bottom line sums of the µ(d1d2) [
32 − x1
d1d2

] and SR columns are the

same in this case, namely 4, that being the number of upper twin primes between 5
and 32 as well as the number 1.

While the overall sums of the µ(d1, d2) [
32 − x1
d1d2

] and SR columns are both 4, we note

the sum SR of each individual row does not always equal µ(d1, d2) [
32 − x1
d1d2

] but is

sometimes µ(d1, d2) [
32 − x1
d1d2

] ± 1.Thus the (d1, d2) rows of (3,1) and (1,3) are,

d1 d2 x1 d1d2 µ(d1d2) [
32 − x1
d1d2

] SR

3 1 0 3 -10 -10
1 3 2 3 -10 -11

But we also have the (d1, d2) rows of (2 × 3,1) and (2,3) thus,

d1 d2 x1 d1d2 µ(d1d2) [
32 − x1
d1d2

] SR

2 × 3 1 0 6 5 5
2 3 2 6 5 6

Therefore the sum of this “quartet” of terms in ∑µ(d1d2) [
32 − x1
d1d2

] is the same as

the corresponding four SR sums, that is, −10 − 10 + 5 + 5 = −10 − 11 + 5 + 6 = −10 and
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hence each SR sum may be replaced by the corresponding µ(d1d2) [
32 − x1
d1d2

] term.

This is true of the other 3 “quartets” formed from the (d1, d2) pairs (5,1), (3,5) and
(3 × 5,1).
Accordingly the number of upper primes of twin prime pairs is given by:

T (5,32,2) =
∗
∑µ(d1d2) [

32 − x1
d1d2

]

We want to prove this is true in general for any larger even positive integer N replacing
32 and pθ replacing 5 where pθ is the largest prime less than

√
N.



Chapter 3

Counting Theorem

3.1 Quartets and expanded Table 4

In constructing Table 4 we began the data entries with the two rows for the (d1, d2)
pairs of (1,1) and (2,1). Thereafter whenever we introduced each of the succession of
sieving primes we generated sets of four rows, one set for 3, three more for 5.

Definition 2. We call these sets of four rows Quartets and note they all have the
same form of,

d1 d2
π1 π2
π2 π1
2π1 π2
2π2 π1

where π1 and π2 are the products of integers chosen from {3,5}∪{1} with gcd(π1, π2) =
1 but excluding the (d1, d2) pairs of (1,1) and (2,1) which as noted above generated
the first two rows.

Specifically, in each quartet,

� the first row is formed from a unique selection of products of one or more ele-
ments of {1,3,5} to form d1 and d2. (d1 ≠ 1.)

� the second row is formed by interchanging d1 and d2.

� the third row is formed from 2d1 and d2.

� the fourth row is formed from 2d2 and d1.

16
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Definition 3. For any combination of d1 and d2 each chosen from the product of ele-
ments of the set of primes and 1, that is from {2,3,5,⋯, pθ}∪{1} with gcd(d1, d2) = 1
and 2 ∤ d2, we define the term x1 to be the solution of the system of linear congruences,

x ≡ 0(mod d1) x ≡ 2(mod d2)

Notation 3. A quartet of rows in Table 4 can have four different values for x1 and
we will use the symbols α,β, γ, δ for these four values. In particular, with “least
non-negative” abbreviated to “lnn” we define,

1. α is the lnn solution of the system x ≡ 0(mod d1), x ≡ 2(mod d2)

2. β is the lnn solution of the system x ≡ 0(mod d2), x ≡ 2(mod d1)

3. γ is the lnn solution of the system x ≡ 0(mod 2d1), x ≡ 2(mod d2)

4. δ is the lnn solution of the system x ≡ 0(mod 2d2), x ≡ 2(mod d1)

In all subsequent Table-4 like Tables, we will always put each quartet of rows in the
above order. The four rows of each quartet in a table will be called the α,β, γ and
δ rows and the sum of the ±1′s in each row will be referred to as SR(α), SR(β),
SR(γ) and SR(δ) respectively. We now expand Table 4 with more sieving primes.

Definition 4. When we introduce more sieving primes in the order 7,11,13, . . . we
need to construct an expanded Table 4. In general, when we introduce the pth prime
we add 3p−1 quartets of rows to Table 4 and we need to increase the numbered columns
from 1 to 32 to 1 to a new N such that the pth prime is the largest prime less than√
N. We call all of this an expanded Table 4.

Lemma 1. The pth sieving prime adds 3p−1 quartets to an expanded Table 4.

Proof. We add the pth sieving prime to an expanded Table 4. We designate it as p.
The (d1, d2) pair of (p,1) gives the first quartet, the next p − 1 quartets have d1 = p
times each of the preceding sieving primes and d2 = 1 and so on. We have a total of:

1 + (
p − 1

1
) + (

p − 1

2
) + . . .(

p − 1

p − 1
)

+ (
p − 1

1
) [1 + (

p − 2

1
) + (

p − 2

2
) + . . . + (

p − 2

p − 2
)]

+ (
p − 1

2
) [1 + (

p − 3

1
) + (

p − 3

2
) + . . . + (

p − 3

p − 3
)]

+ . . .

+ (
p − 1

p − 1
) [1]

= 2p−1 + (
p − 1

1
)2p−2 + (

p − 1

2
)2p−3 + . . .(

p − 1

p − 1
)20

= (2 + 1)p−1 = 3p−1 quartets
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The headings of an expanded Table 4 conclude with columns for the integers 1 to N.
Obviously we cannot print the expansions of Table 4 as we add more and more sieving
primes from 7 to 11 to 13 and so on since the number of rows increases exponentially.
But we can visualize and generalize its simple structure. Indeed, for counting purposes
we only need to find the first and last terms in each row, the in-between values being
known from the constructions x1, x1 + d1d2 and so on described above.

� The first data row, due to µ(1), is simply N consecutive +1′s. From now on we
require N to be an even positive integer.

� The second data row begins with a -1 under 2 and then -1’s under 2+2, 2+2+2,

etc, the negative signs due to µ(2), giving a total of
N

2
−1′s.

� Thereafter we have a series of quartets of rows as outlined above.

Our goal is to show the four sums of ±1′s in each quartet can be replaced by the sum

of four terms of the form µ(d1d2) [
N − x1
d1d2

] with each x1 as defined above.

The sum of four values of SR in a general quartet can be easily calculated as we shall
see but to get the grand total of all the SR′s we need the addition of the SR′s of,

4 × (30 + 31 + 32 +⋯ + 3θ−1)

rows where pθ is prime number θ in the ascending size of primes. This is too long an

addition for large θ and hence the shift to the form µ(d1d2) [
N − x1
d1d2

]

But we note that the value of SR for each row in an expanded Table 4 gives an actual
count of the number of insertions and deletions and therefore the sum of the SRs is
an actual count of the number of upper twin primes in the (pθ,N) interval.
We have the following setup for the main counting theorem:

1. N is a positive even integer in the interval (pθ, p2θ+1) where,

2. pθ is the largest prime less than
√
N and pθ+1 is the next largest prime.

3. d1 is the product of one or more elements of the set {2,3, . . . , pθ} ∪ {1} , where
2,3, . . . pθ are consecutive primes,

4. d2 is the product of one or more elements of the set {3, . . . , pθ}∪ {1} subject to
the conditions that gcd(d1, d2) = 1 and also gcd(d2,2) = 1,

Our goal is to show ∑µ(d1d2) [
N − x1
d1d2

] , with the sum limits to be defined, is equal

to the sum of the SRs, therefore being a count of all the twin prime pairs in this

interval and therefore we have T (pθ,N,2) = ∑µ(d1d2) [
N − x1
d1d2

].
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3.2 Two lemmas and two corollaries

Here are four results we will need for what follows. We will deal separately with the
cases where d1 = 1 or d2 = 1 so in what follows we always require d1 ≠ 1 and d2 ≠ 1.

Lemma 2.
For any quartet in an expanded Table 4 with d1 > 1 and d2 > 1 and both a product of
odd primes, we have,

α + β = 2 + d1d2.

So one of α and β is odd and the other is even.

Proof.
By definition,
α is the least non-negative solution of the system x ≡ 0(mod d1) and x ≡ 2(mod d2),
β is the least non-negative solution of the system x ≡ 0(mod d2) and x ≡ 2(mod d1).
So from the definitions of α and β we have for some a, b, c, e ∈ Z+,

α = ad1 = 2 + bd2

β = cd2 = 2 + ed1

⇒ α + β = 2 + bd2 + cd2 ≡ 2(mod d2)

α + β = ad1 + 2 + ed1 ≡ 2(mod d1)

Now since each prime number in both d1 and d2 divides α + β − 2 then,

d1d2∣α + β − 2⇒ α + β ≡ 2(mod d1d2)⇒ α + β = 2 + kd1d2, k ∈ Z+

Now α = ad1⇒ α > 2 since d1 ≥ 3 and β = cd2⇒ β > 2 so

α + β > 4

Note, by the Chinese Remainder Theorem that all solutions of linear congruences
such as,

x ≡ 0(mod d1) and x ≡ 2(mod d2)

are equal congruent modulo d1d2 and therefore α as the least non-negative solution
is less than d1d2. The same applies to β.
Now α < d1d2 and β < d1d2 makes α + β < 2d1d2. Hence

4 < α + β < 2d1d2

But α + β = 2 + kd1d2, hence k cannot be 0 or greater than 1. Accordingly,

α + β = 2 + d1d2
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Corollary 3.

One of α and β is greater than
2 + d1d2

2
and the other is less than

2 + d1d2
2

.

Accordingly, if α > β then α >
2 + d1d2

2
⇒ 2α−2 > d1d2 and if α < β then 2α−2 < d1d2.

Lemma 4.
If α is odd then γ = α + d1d2
If α is even then γ = α.
The same relationship applies to β and δ.

Proof. Suppose α is odd. We have,
α ≡ 0(mod d1)⇒ α = ad1, a ∈ Z+ and we must have a odd since α is.
Also, α ≡ 2(mod d2)⇒ α = 2 + kd2.
We want to show γ = α + d1d2 where,

γ ≡ 0(mod 2d1), γ ≡ 2(mod d2)

Now,
α + d1d2 = 2 + kd2 + d1d2 ≡ 2(mod d2)

as is γ. And,
α + d1d2 = ad1 + d1d2 = (a + d2)d1

Now a is odd so a + d2 is even, say a + d2 = 2j. Then,

α + d1d2 = 2jd1 ≡ 0(mod 2d1)

as is γ. Hence,
γ = α + d1d2.

****

Suppose α is even. Again note γ ≡ 0(mod 2d1) and γ ≡ 2(mod d2).
Now α = ad1 makes a even. So we can write α = 2ād1 ≡ 0(mod 2d1). But together
with α ≡ 2(mod d2), this is the definition of γ.

Corollary 5.

γ + δ = 2 + 2d1d2

Proof. From Lemma 2 one of α,β is odd and the other even.
So either γ = α and δ = β + d1d2 or vice versa. Hence, by Lemma 8,

γ + δ = α + β + d1d2 = 2 + 2d1d2

Using the terminology as above we will prove a series of lemmas which together
give us the proof of the following theorem.
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3.3 Main Counting Theorem

Theorem 6.
In the primod-pθ number system, the number of primods less than a non-negative,
even integer, N, with no p-digits equal to 0 or 2(mod p) is given by:

T (pθ,N,2) =
∗
∑µ(d1d2) [

N − x1
d1d2

]

where
∗
∑ is a sum where,

(a) pθ is the largest prime less than
√
N,

(b) d1 is the product of one or more elements of the set {2,3, . . . , pθ} ∪ {1} , where
2,3, . . . pθ are consecutive primes,

(c) d2 is the product of one or more elements of the set {3, . . . , pθ} ∪ {1} so that
gcd(d2,2) = 1,

(d) gcd(d1, d2) = 1 or 2 ∤ d2,

(e) the sum is over all possible values of d1 and d2,

(f) µ is the Möbius function and [x] the greatest integer function,

(g) x1 is the least non negative solution of the system of equations

x ≡ 0(mod d1), x ≡ 2(mod d2)

Equivalently the number of upper primes of a twin prime pair between pθ and N is
given by T (pθ,N,2) as defined above.

Proof.
Without actually showing it, since its size grows exponentially, we visualize expanded
Table 4s constructed by introducing successive primes into such Table 4s beginning
with 7, then 11, and so on up to pθ where pθ is the largest prime less than

√
N,

with N ∶ pθ < N < p2θ+1. In each expanded Table 4 we need show only the first and
last terms in a row since the first term is that row’s x1 and all the other terms are
x1+d1d2, x1+2d1d2, . . . for insertions or x1+2d1d2, x1+4d1d2, . . . for deletions, stopping
if such an insertion/deletion exceeds N and giving the last term for that row.
It is simplist to think of N as p2θ < N < p2θ+1 so that N is readjusted as new p′θs are

introduced. First we show the SR sums and the µ(d1d2) [
N − x1
d1d2

] values are the same

for the first two data rows in an expanded Table 4.
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3.3.1 First two rows

Lemma 7. In any expanded Table 4 the SR sum of the first row is N, the SR sum

of the second row is −
N

2
and the corresponding values of µ(d1d2) [

N − x1
d1d2

] are also

N and −
N

2
respectively.

Proof. As in Table 4, there will be a “1” placed under each of the integers 1 to
N making the sum of the first row SR = N. In this row, d1 = d2 = 1 so x1 = 0
since it is the least non-negative solution of x ≡ 0(mod 1) and x ≡ 2(mod 1) so that

µ(d1d2) [
N − x1
d1d2

] = N also.

For the second row there will be a “-1” placed under each even integer in the range 1

to N and since N is even, this SR = −
N

2
. In this row, d1 = 2 and d2 = 1 so that x1 = 0

again and µ(d1d2) [
N − x1
d1d2

] = −
N

2
also.

3.3.2 Quartets with π2 = 1 and π1 > 1.

Lemma 8. With reference to the general Definition 2 on page 16 of a quartet we put
π1 = π and π2 = 1. For π a product of odd primes chosen from {3,5,7, . . . , pθ} we have
the unique quartet,

d1 d2 d1d2 µ(d1d2) x1
π 1 π 1 0
1 π π 1 2

2π 1 2π -1 0
2 π 2π -1 2

Table 5: Quartets with π2 = 1

where, since the choice does not matter, we choose µ(π) = 1 and µ(2π) = −1. Then the
sum of the respective four values of SR in an expanded Table 4 equal the corresponding

sum of the four values of µ(d1d2) [
N − x1
d1d2

]

Proof. Let π be a product of odd primes chosen from {3,5,7, . . . , pθ}.
The four values for x1 in the final column of Table 5 are the solutions of the following
systems of linear congruences and we again label them α,β, γ, δ to distinguish them.

x ≡ 0(mod π), x ≡ 2(mod 1)⇒ α = 0

x ≡ 0(mod 1), x ≡ 2(mod π)⇒ β = 2

x ≡ 0(mod 2π), x ≡ 2(mod 1)⇒ γ = 0

x ≡ 0(mod 2), x ≡ 2(mod π)⇒ δ = 2

There are 8 cases to consider. Note,
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1. Each choice for N must be even so N cannot equal π.

2. The cases N = kπ + l, k even, l < π are included in N = 2kπ + l and the cases
N = k′π + l, k′ odd in N = 2kπ + π + l, k′ = 2k + 1.

3. We have k, k′ ∈ Z+.

4. We have π ≥ 3.

Case 1: 2 < N < π
Case 2: N = π + 1
Case 3: N = π + l,3 ≤ l < π, l odd (note π + 2 is an odd number).
Case 4: π∣N or N = 2kπ, k ∈ Z+

Case 5: N = 2kπ + 2 (note N = 2kπ + 1 is an odd number).
Case 6: N = 2kπ + l, 2 < l < π, l even
Case 7: N = 2kπ + π + 1
Case 8: N = 2kπ + π + l, 2 < l < π, l odd

We consider each of the 8 cases in turn.
Note each d1, d2 choice is unique and connects the four SR values with the four great-
est integer values. In each quartet we align the four SR values with the four greatest
integer values by arbitrarily making the insertions into the α and β rows all +1’s and
the γ and δ rows all insertions of −1′s. Then the µ(d1d2) for the first two rows we put
+1′s and for the last two rows we put −1′ since we are dealing with an extra prime,
namely 2, in µ(2d1d2). Clearly we could reverse all this but the overall conclusion
as to whether the sums of the four SR rows and the four greatest integer terms are
equal or not would be the same.
We fill in each row of our unique quartet of an expanded Table 4 beginning with a
±1 at the position of its x1 value and then further ±1′s at the positions of successive
additions of d1d2 for the α and β rows and at successive additions of 2d1d2 for the γ
and δ rows.
Each of the 8 tables below shows the position of the first entry and the last entry of
the relevant row in an expanded Table 4 at which they and the inbetween positions
we would put the +1 or -1, from which we calculate the SR values.
Note each last entry must be ≤ N.
In the 8 cases calculated in Tables 6 to 13, the four x1 values are α = 0, β = 2,
γ = 0, δ = 2.
The SR values are straightforward, being the number of entries between the first and
last entry on the respective row of an expanded Table 4.

The µ(d1d2) [
N − x1
d1d2

] values are calculated for each case. For convenience we choose

µ(d1d2) = 1 and µ(2d1d2) = −1.



24 Chapter 3. Counting Theorem

Case 1: 2 < N < π
We have, noting π ≥ 3,

[
N − α

d1d2
] = [

< π

π
] = 0 [

N − β

d1d2
] = [

< (π − 2)

π
] = 0

[
N − γ

2d1d2
] = [

< π

2π
] = 0 [

N − δ

2d1d2
] = [

< (π − 2)

2π
] = 0

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 0 0 0 0
β 1 π π 2 2 2 1 0
γ 2π 1 2π 0 0 0 0 0
δ 2 π 2π 2 2 2 −1 0

Total 0 0

Table 6 - Case 1: 2 < N < π

We calculate the SR sums as follows. The possible entries on the α row where α = 0
are at the positions 0, 0 + π, 0 + 2π, . . . But with N < π we only have 0 as the first
and last entry position before N. Thus SR(α) = 0. The possible entries on the β row
where β = 2 are at the positions 2, 2+π, 2+ 2π, . . . but with N < π we only have 2 as
the first and last entry position on the β row and thus SR(β) = 1. Note +1 and not
−1 since we are arbitrarily choosing the α and β rows are additions.
The possible entries on the γ row where γ = 0 are at positions 0, 0+2d1d2, 0+4d1d2 . . .
but with N < π we only have 0 as the first and last entry position, hence SR(γ) = 0.
Finally the possible entry positions on the δ row are at 2, 2 + 2d1d2,2 + 4d1d1, . . .
but again with N < π we only have 2 as the first and last insertion position, making
SR(δ) = −1. Note it is −1 and not +1 since if the α and β rows are for additions then,
with 2 as an extra prime multiplying d1d2, the γ and δ rows are for deletions.
Similar arguments apply to all the other Cases and Cases 2 and 3 are presented with-
out further comment.

Case 2: N = π + 1

[
N − α

d1d2
] = [

π + 1

π
] = 1 [

N − β

d1d2
] = [

π + 1 − 2

π
] = 0

[
N − γ

2d1d2
] = [

π + 1

2π
] = 0 [

N − δ

2d1d2
] = [

π + 1 − 2

2π
] = 0
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Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π π 1 1
β 1 π π 2 2 2 1 0
γ 2π 1 2π 0 0 0 0 0
δ 2 π 2π 2 2 2 −1 0

Total 1 1

Table 7 - Case 2: N = π + 1

Case 3: N = π + l,3 ≤ l < π

[
N − α

d1d2
] = [

π + l

π
] = 1 [

N − β

d1d2
] = [

π + l − 2

π
] = 1

[
N − γ

2d1d2
] = [

π + l

2π
] = 0 [

N − δ

2d1d2
] = [

π − 2 + l

2π
] = 0

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π π 1 1
β 1 π π 2 2 π + 2 2 1
γ 2π 1 2π 0 0 0 0 0
2δ 2 π 2π 2 2 2 −1 0

Total 2 2

Table 8 - Case 3: N = π + l, 3 ≤ l < π

Here are some comments on Case 4, the arguments for Cases 5 to 8 are similar.
The possible entry positions on the α row where α = 0 are 0, π, 2π, . . . ,2kπ =

N so SR(α) = 2kπ. The possible entry positions on the β row where β = 2 are
2, π + 2, 2π + 2, . . . , (2k − 1)π + 2, 2kπ + 2, . . . . Noting (2k − 1)π + 2 is the last entry
less than N = 2kπ then SR(β) = 2k. The possible entry positions on the γ row where
γ = 0 are 0, 2π, 4π, . . . k(2π) = N so SR(γ) = −k. Finally the possible entry positions
on the δ row where δ = 2 are 2, 2π + 2, 4π + 2, . . . , (k − 1)2π + 2 so SR(δ) = −k. Note
2π is much larger than 2 so (k − 1)2π + 2 < N = 2kπ but 2kπ + 2 > N = 2kπ.

Case 4: π∣N or N = 2kπ, k ∈ Z+

[
N − α

d1d2
] = [

2kπ

π
] = 2k [

N − β

d1d2
] = [

2kπ − 2

π
] = 2k − 1

[
N − γ

2d1d2
] = [

2kπ

2π
] = k [

N − δ

2d1d2
] = [

2kπ − 2

2π
] = k − 1.
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Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π 2kπ 2k 2k
β 1 π π 2 2 2 + (2k − 1)π 2k 2k − 1
γ 2π 1 2π 0 2π 2kπ −k −k
δ 2 π 2π 2 2 2 + (k − 1)2π −k −(k − 1)

Total 2k 2k

Table 9 - Case 4: N = 2kπ, k ∈ Z+

Case 5: N = 2kπ + 2

[
N − α

d1d2
] = [

2kπ + 2

π
] = 2k [

N − β

d1d2
] = [

2kπ

π
] = 2k

[
N − γ

2d1d2
] = [

2kπ + 2

2π
] = k [

N − δ

2d1d2
] = [

2kπ

2π
] = k

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π 2kπ 2k 2k
β 1 π π 2 2 2 + 2kπ (2k + 1) 2k
γ 2π 1 2π 0 2π 2kπ −k −k
δ 2 π 2π 2 2 2 + 2kπ −(k + 1) −k

Total 2k 2k

Table 10 - Case 5: N = 2kπ + 2

Case 6: N = 2kπ + l, 2 < l < π

[
N − α

d1d2
] = [

2kπ + l

π
] = 2k [

N − β

d1d2
] = [

2kπ + l − 2

π
] = 2k

[
N − γ

2d1d2
] = [

2kπ + l

2π
] = k [

N − δ

2d1d2
] = [

2kπ + l − 2

2π
] = k

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π 2kπ 2k 2k
β 1 π π 2 2 2 + 2kπ (2k + 1) 2k
γ 2π 1 2π 0 2π 2kπ −k −k
δ 2 π 2π 2 2 2 + 2kπ −(k + 1) −k

Total 2k 2k

Table 11 - Case 6: N = 2kπ + l, 2 < l < π
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Case 7: N = 2kπ + π + 1

[
N − α

d1d2
] = [

2kπ + π + 1

π
] = 2k + 1 [

N − β

d1d2
] = [

2kπ + π + 1 − 2

π
] = 2k

[
N − γ

2d1d2
] = [

2kπ + π + 1

2π
] = k [

N − δ

2d1d2
] = [

2kπ + π + 1 − 2

2π
] = k

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π (2k + 1)π (2k + 1) (2k + 1)
β 1 π π 2 2 2 + 2kπ (2k + 1) 2k
γ 2π 1 2π 0 2π 2kπ −k −k
δ 2 π 2π 2 2 2 + 2kπ −(k + 1) −k

Total (2k + 1) (2k + 1)

Table 12 - Case 7: N = 2kπ + π + 1

Case 8: N = 2kπ + π + l, 2 < l < π

[
N − α

d1d2
] = [

2kπ + π + l

π
] = 2k + 1 [

N − β

d1d2
] = [

2kπ + π + l − 2

π
] = 2k + 1

[
N − γ

2d1d2
] = [

2kπ + π + l

2π
] = k [

N − δ

2d1d2
] = [

2kπ + π + l − 2

2π
] = k

Row d1 d2 d1d2 x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

]

α π 1 π 0 π (2k + 1)π (2k + 1) (2k + 1)
β 1 π π 2 2 2 + (2k + 1)π (2k + 2) (2k + 1)
γ 2π 1 2π 0 2π 2kπ −k −k
δ 2 π 2π 2 2 2 + 2kπ −(k + 1) −k

Total (2k + 2) (2k + 2)

Table 13 - Case 8: N = 2kπ + π + l, 2 < l < π

The Lemma is proved. In all eight cases of the specified quartets, the sum of the
respective four values of SR in the expanded Table 4 equal the corresponding sum of

the four values of µ(d1d2) [
N − x1
d1d2

] .

All the other quartets in an expanded Table 4 have d1 and d2 both greater than 1.
In general we choose from the primes {3,5, . . . pθ}, a product of odd primes for d1
which we label d1 =∏

∗ pi and a different product of odd primes for d2 which we label
d2 = ∏

∗ qj and note no qj is the same as any pi or gcd(d1, d2) = 1. Then the general
quartet will be formed thus,
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d1 d2 d1d2
∏

∗ pi ∏
∗ qj ∏

∗ pi∏∗ qj
∏

∗ qj ∏
∗ pi ∏

∗ pi∏∗ qj
2∏

∗ pi ∏∗ qj 2∏
∗ pi∏∗ qj

2∏
∗ qj ∏

∗ pi 2∏
∗ pi∏∗ qj

Table 14: General Quartet

We again label the four corresponding values of x1 as,
α: the least non negative solution of x ≡ 0(mod ∏

∗ pi) and x ≡ 2(mod ∏
∗ qj)

β: the least non negative solution of x ≡ 0(mod ∏
∗ qj) and x ≡ 2(mod ∏

∗ pi)
γ: the least non negative solution of x ≡ 0(mod 2∏

∗ pi) and x ≡ 2(mod ∏
∗ qj)

δ: the least non negative solution of x ≡ 0(mod 2∏
∗ qj) and x ≡ 2(mod ∏

∗ pi)

Having dealt with the first two data lines and all quartets with d1 = 1 or d2 = 1
in expanded Table 4s, we can analyze all the other quartets in an expanded Table
4 by noting either α = N, α > N or α < N. We note that N and α are independent
of one another and that the values of β, γ and δ are derived from the values of d1
and d2 that give α, so the four of them are related as shown in Lemmas 2 and 4 and
Corollaries 3 and 5. Note also that both α and β are less than their respective d1d2
and therefore so is α − β if α > β or β − α if β > α.

3.3.3 Quartets with α = N.

Lemma 9. For those quartets with α = N the sum of the respective four values
of SR in an expanded Table 7 equal the sum of the corresponding four values of

µ(d1d2) [
N − x1
d1d2

]

Proof. Since N is even we have α = γ = N. There are two cases,
Case 1: α = N,β < N
Case 2 α = N,β > N
Note since α + β = 2 + d1d2 and d1d2 is odd, we cannot have α = β.

Case 1: α = N,β < N
By Lemma 4, γ = α = N since N and therefore α are even. And we have δ = β + d1d2
since β must be odd.
We have SR(α) = 1 since α = N is counted but α + d1d2 > N is not.
Similarly SR(γ) = −1.
We are given β < N but both are less than d1d2 since α is, so N − β < d1d2. Then
β + d1d2 > N making SR(β) = 1.
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By the same argument δ = β + d1d2 > N so SR(δ) = 0. Finally,

[
N − α

d1d2
] = 0 [

N − γ

2d1d2
] = 0

N − β > 0 and N − β < d1d2⇒ 0 < N − β < d1d2⇒ [
N − β

d1d2
] = 0

− d1d2 < N − β − d1d2 < 0⇒ [
N − δ

2d1d2
] = −1

giving Table 15 for Case 1 below. The Total given in the final column of each Table
of Case 1 and Case 2 is the sum of the entries in the last two columns, that is of the
four greatest integer calculations. This will apply to all future cases.

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 1 0
γ γ γ −1 0
δ 0 0 0 1

Total 1 1

Table 15 - Case 1: α = N,β ≤ N

Case 2: α = N, β > N
We have γ = α = N since N and therefore α are both even. And we have δ = β + d1d2
since β must be odd. Then,

[
N − α

d1d2
] = 0 [

N − γ

2d1d2
] = 0

N − β < 0 and β −N < d1d2⇒ −d1d2 < N − β < 0⇒ [
N − β

d1d2
] = −1

− 2d1d2 < N − β − d1d2 < −d1d2⇒ [
N − δ

2d1d2
] = −1

giving the Table for Case 2 below.

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β 0 0 0 −1
γ γ γ −1 0
δ δ 0 0 1

Total 0 0

Table 16 - Case 2: α = N, β > N

The Lemma is proved. In both cases the sum of the respective four SR of such
quartets in an expanded Table 4 equal the corresponding sum of the four values of

µ(d1d2) [
N − x1
d1d2

] .



30 Chapter 3. Counting Theorem

3.3.4 Quartets with α > N.

Lemma 10. For those quartets with α > N the sum of the respective four values
of SR in an expanded Table4 equal the sum of the corresponding four values of

µ(d1d2) [
N − x1
d1d2

]

Proof.
In any quartet there are four possibilities or cases for α > N.

Case 1: α > N, β > N, α even, β odd
Case 2: α > N, β < N, α even, β odd
Case 3: α > N, β > N, α odd, β even
Case 4: α > N, β < N, α odd, β even

Note α < d1d2 and α > N means we also have N < d1d2.

Case 1: α > N, β > N, α even, β odd
We have γ = α and δ = β + d1d2 so all four of α,β, γ, δ are greater then N and there
will be no entries in the rows of an expanded Table 4 corresponding to this quartet
so that the four SR sums are all zero.
Since α > N then both are less than d1d2 and so is their difference and we have

−d1d2 < N − α < 0 so that [
N − α

d1d2
] = −1.

Similarly −d1d2 < N − β < 0⇒ [
N − β

d1d2
] = −1.

Since γ = α then [
N − γ

2d1d2
] = −1.

Finally, −d1d2 < N − β < 0⇒ −2d1d2 < N − δ < −d1d2⇒ [
N − δ

2d1d2
] = −1.

Hence we have,

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α 0 0 0 −1
β 0 0 0 −1
γ 0 0 0 1
δ 0 0 0 1

Total 0 0

Table 17 - Case 1: α > N, β < N, α even, β odd

Case 2: α > N, β < N, α even, β odd
We have γ = α so α, γ are greater then N and the values in the α and γ rows are the
same as in Case 1.
Now α < d1d2 and β < d1d2 so α − β < d1d2 ⇒ α < β + d1d2 = δ so there are no entries
on the δ row.
However, β < N means there is an entry in the β row on an expanded Table 4 but no
entry in any of the other three rows, giving the four SR values of 0,1,0,0 respectively.
Since α > N then both are less than d1d2 and so is their difference and we have
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−d1d2 < N − α < 0⇒ −1 <
N − α

d1d2
< 0 so that [

N − α

d1d2
] = −1.

Since γ = α then [
N − γ

2d1d2
] = −1.

Since both N and β are less than d1d2 then 0 < N − β < d1d2 so [
N − β

d1d2
] = 0.

Finally 0 < N − β < d1d2⇒ −d1d2 < N − δ < 0 so [
N − δ

2d1d2
] = −1. Hence we have,

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α 0 0 0 −1
β β β 1 0
γ 0 0 0 1
δ 0 0 0 1

Total 1 1

Table 18 - Case 2: α > N, β < N, α even, β odd

Case 3: α > N, β > N, α odd, β even
Since α > N,β > N then SR(α) = SR(β) = 0.
Since γ = α + d1d2 then γ > N so SR(γ) = 0.
Since δ = β then δ > N so SR(δ) = 0.
Since α > N then both are less than d1d2 and −d1d2 < N − α < 0

⇒ −1 <
N − α

d1d2
< 0 making [

N − α

d1d2
] = −1.

Similarly, −d1d2 < N − β < 0⇒ −1 <
N − β

d1d2
< 0 making [

N − β

d1d2
] = −1.

Since γ = α + d1d2 then −d1d2 < N − α < 0⇒ −2d1d2 < N − γ < −d1d2⇒ [
N − γ

2d1d2
] = −1.

Since δ = β we have −d1d2 < N − δ < 0⇒ −
1

2
<
N − δ

2d1d2
< 0 making [

N − δ

2d1d2
] = −1.

We have,

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α 0 0 0 −1
β 0 0 0 −1
γ 0 0 0 1
δ 0 0 0 1

Total 0 0

Table 19 - Case 3: α > N, β > N, α odd, β even

Case 4: α > N, β < N, α odd, β even
We have γ = α + d1d2 and δ = β so α, γ are greater then N with each SR = 0 while
β < N ⇒ SR(β) = 1 and SR(δ) = −1.

Since α > N, then as in Case 3, [
N − α

d1d2
] = −1.
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Since γ = α + d1d2 then as for Case 3, [
N − γ

2d1d2
] = −1.

Since β < N then N − β is a positive number less than d1d2 so 0 < N − β < d1d2 ⇒

[
N − β

d1d2
] = 0.

Since δ = β then 0 < N − δ < d1d2⇒ [
N − δ

2d1d2
] = 0 also.

x1 First terms Last term SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α 0 0 0 −1
β β β 1 0
γ 0 0 0 1
δ δ δ −1 0

Total 0 0

Table20 - Case 4: α > N, β < N, α odd, β even

The Lemma is proved. In all quartets in an expanded Table 4 where α > N, the

four SR sums add to the same value as the two µ(d1d2) [
N − x1
d1d2

] values plus the two

µ(2d1d2) [
N − x1
2d1d2

] values.

3.3.5 Quartets with α < N.

Lemma 11. For those quartets with α < N the sum of the respective four values
of SR in an expanded Table 4 equal the sum of the corresponding four values of

µ(d1d2) [
N − x1
d1d2

]

Proof. There are 19 cases to consider, most with an A and B option.
Note each choice for N must be even.
Note the cases N = kd1d2 + l, k even are included in N = 2kd1d2 + l and the cases
N = k′d1d2 + l, k′ odd in N = 2kd1d2 + d1d2 + l where k′ = 2k + 1. In Cases 10 to 19
k ≥ 1, k ∈ Z

Case 1: N − α = l, l < d1d2, α > β,α even so l is even.
Case 2: N − α = l, l < d1d2, α < β,α even so l is even.
Case 3: N − α = l, l < d1d2, α > β,α odd so l is odd.
Case 4: N − α = l, l < d1d2, α < β,α odd so l is odd.
Case 5: N − α = d1d2, so α is odd.
Case 6: N − α = d1d2 + l, l < d1d2, α > β,α even so l is odd.
Case 7: N − α = d1d2 + l, l < d1d2, α < β,α even so l is odd.
Case 8: N − α = d1d2 + l, l < d1d2, α > β,α odd so l is even.
Case 9: N − α = d1d2 + l, l < d1d2, α < β,α odd so l is even.
Case 10: N − α = 2kd1d2, α even, α > β
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Case 11: N − α = 2kd1d2, α even, β > α
Case 12: N − α = 2kd1d2 + l, l < d1d2, α, l even, α > β
Case 13: N − α = 2kd1d2 + l, l < d1d2, α, l even, β > α
Case 14: N − α = 2kd1d2 + l, l < d1d2, α, l odd, α > β
Case 15: N − α = 2kd1d2 + l, l < d1d2, α, l odd, β > α
Case 16: N − α = 2kd1d2 + d1d2 + l, l < d1d2, l, odd, α even, α > β
Case 17: N − α = 2kd1d2 + d1d2 + l, l < d1d2, l odd, α even, β > α
Case 18: N − α = 2kd1d2 + d1d2 + l, l < d1d2, l even, α odd, α > β
Case 19: N − α = 2kd1d2 + d1d2 + l, l < d1d2, l even, α odd, β > α

Note 1. Note α > β generates a chain of inequalities such as
β < α < β + d1d2 < α + d1d2 < β + 2d1d2,⋯ since α < d1d2 and β < d1d2 makes
α − β < d1d2 or α < β + d1d2 and so on.
Note also when counting for SR(γ) and SR(δ) the counted terms are of the form
γ, γ +2d1d2, γ +4d1d2, . . . and similarly for the δ row, thus terms of the form γ +d1d2
or δ + d1d2 are not counted in the SRs.

However, for example, the chain γ + d1d2 < N < γ + 2d1d2 does make [
N − γ

2d1d2
] = 0.

Case 1: N − α = l, l < d1d2, α > β,α even.
Since α − β < d1d2 and l < d1d2 then α − β ≤ d1d2 − l and α − β ≥ d1d2 − l are both
possible making N ≤ β + d1d2 or N ≥ β + d1d2 which gives us Cases 1A and 1B.

Case 1A: N − α = l, l < d1d2, α > β,α even, N − β ≤ d1d2
We have γ = α, δ = β + d1d2 and the chain,

β = δ − d1d2 < α = γ < N = α + l ≤< β + d1d2 = δ < α + d1d2 = γ + d1d2

from which, SR(α) = 1, SR(β) = 1, SR(γ) = −1, SR(δ) = 0 can be entered in the
Table below. Then,

[
N − α

d1d2
] = [

l

d1d2
] = 0, [

N − γ

d1d2
] = [

N − α

2d1d2
] = 0

From the chain above we have the subchains,

β < N ≤ β + d1d2⇒ [
N − β

d1d2
] = 0, δ − d1d2 < Nδ⇒ [

N − δ

2d1d2
] − 1

All of these results have been entered in the Table below, the signs on the entries in
the γ and δ rows being changed as discussed above.
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 1 0
γ γ γ −1 0
δ 0 0 0 1

Total 1 1

Table 21 - Case 1A: N − α = l, l < d1d2, α even, α > β,N − β < d1d2

Case 1B: N − α = l, l < d1d2, α > β,α even, N − β ≥ d1d2
We have the chain,

β < α = γ < β + d1d2 = δ ≤ N = α + l < α + d1d2 = γ + d1d2 < β + 2d1d2 = δ + d1d2

giving SR(α) = 1, SR(β) = 2, SR(γ) = −1, SR(δ) = −1.

Again, [
N − α

d1d2
] = [

l

d1d2
] = 0 and since γ = α, [

N − γ

2d1d2
] = 0.

From the chain above we have,

β + d1d2 ≤ N < β + 2d1d2⇒ [
N − β

d1d2
] = 1, δ ≤ N < δ + d1d2⇒ [

N − δ

d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 1 1

Table 22 - Case 1B: N − α = l, l < d1d2, α even, α > β,N − β ≥ d1d2

Case 2: N − α = l, l < d1d2, α < β,α even.

It is not possible for N − β ≥ d1d2 since with α < β that would make N − α > d1d2
contradicting N − α = l, l < d1d2. So N − β < d1d2.
But we have two possibilities for the position of β on its row, either β < N = α + l or
β > N = α + l giving Cases 2A and 2B below.

Case 2A: N − α = l, l < d1d2, α < β,α even, β < N
We have the chain,

α = γ < β = δ − d1d2 < N = α + l < α + d1d2 < β + d1d2 = δ

Then SR(α) = 1, SR(β) = 1, SR(γ) = −1, SR(δ) = 0 and,

[
N − α

d1d2
] = [

l

d1d2
] = 0, [

N − γ

2d1d2
] = [

N − α

2d1d2
] = 0
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β < N < β + d1d2⇒ [
N − β

d1d2
] = 0, δ − d1d2 < N < δ⇒ [

N − δ

2d1d2
] = −1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 1 0
γ γ γ −1 0
δ 0 0 0 1

Total 1 1

Table 23 - Case 2A: β < N, N − α = l, l < d1d2, α even, α > β, N − β < d1d2

Case 2B: N − α = l, l < d1d2, α < β,α even, β > N
We have the chain,

β − d1d2 = δ − 2d1d2 < α = γ < N = α + l < β < δ = β + d1d2

Then SR(α) = 1, SR(β) = 0, SR(γ) = −1, SR(δ) = 0 and,

[
N − α

d1d2
] = [

l

d1d2
] = 0, [

N − γ

2d1d2
] = [

N − α

2d1d2
] = 0

β − d1d2 < N < β ⇒ [
N − β

d1d2
] = −1, δ − 2d1d2 < N < δ⇒ [

N − δ

2d1d2
] = −1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 0 −1
γ γ γ −1 0
δ 0 0 0 1

Total 0 0

Table 24 - Case 2B: β > N,N − α = l, l < d1d2, α even, α > β,N − β < d1d2

Case 3: N − α = l, l < d1d2, α > β,α odd.

As for Case 1 there are two options for β we label 3A and 3B.

Case 3A: N − α = l, l < d1d2, α > β,α odd, N − β ≤ d1d2
We have δ = β, γ = α + d1d2 and,

β = δ < α = γ − d1d2 < N = α + l ≤ β + d1d2 = δ + d1d2 < α + d1d2 = γ
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Then, SR(α) = 1, SR(β) = 1, SR(γ) = 0, SR(δ) = −1.

[
N − α

d1d2
] = [

l

d1d2
] = 0, γ − d1d2 < N < γ ⇒ [

N − γ

2d1d2
] = −1

β < N ≤ β + d1d2⇒ [
N − β

d1d2
] = 0 δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 1 0
γ 0 0 0 1
δ δ δ −1 0

Total 1 1

Table 25 - Case 3A: N − α = l, l < d1d2, α odd, α > β,N − β < d1d2

Case 3B: N − α = l, l < d1d2, α > β,α odd, N − β ≥ d1d2
We have the chain,
β = δ < α = γ − d1d2 < β + d1d2 = δ + d1d2
≤ N = α + l < α + d1d2 = γ < β + 2d1d2 = δ + 2d1d2
Then, SR(α) = 1, SR(β) = 2, SR(γ) = 0, SR(δ) = −1.

[
N − α

d1d2
] = [

l

d1d2
] = 0, γ − d1d2 < N < γ ⇒ [

N − γ

2d1d2
] = −1

β + d1d2 < N < β + 2d1d2⇒ [
N − β

d1d2
] = 1 δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β + d1d2 2 1
γ 0 0 0 1
δ δ δ −1 0

Total 2 2

Table 26 - Case 3B: N − α = l, l < d1d2, α odd, α > β,N − β ≥ d1d2

Case 4: N − α = l, l < d1d2, α < β,α odd.

Again it is not possible for N − β ≥ d1d2 since that would make N − α > d1d2, so
we must have N − β < d1d2 and then two chains depending on the positioning of β.
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Case 4A: N − α = l, l < d1d2, α < β,α odd, β < N
We have the first chain,

α = γ − d1d2 < β = δ ≤ N = α + l < α + d1d2 = γ < β + d1d2 = δ + d1d2

Then, SR(α) = 1, SR(β) = 1, SR(γ) = 0, SR(δ) = −1, and,

[
N − α

d1d2
] = [

l

d1d2
] = 0, β ≤ N < β + d1d2⇒ [

N − β

d1d2
] = 0

γ − d1d2 < N < γ ⇒ [
N − γ

2d1d2
] = −1, δ ≤ N < δ − d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 1 0
γ 0 0 0 1
δ δ δ −1 0

Total 1 1

Table 27 - Case 4A: β < N,N − α = l, l < d1d2, α odd, α < β,N − β ≤ d1d2

Case 4B: N − α = l, l < d1d2, α < β,α odd, β ≥ N
We have the second chain,

β − d1d2 = δ − d1d2 < α = γ − d1d2 < N = α + l ≤ β = δ < α + d1d2 = γ

Then, SR(α) = 1, SR(β) = 0, SR(γ) = 0, SR(δ) = 0, and,

[
N − α

d1d2
] = [

l

d1d2
] = 0, β − d1d2 < N ≤ β ⇒ [

N − β

d1d2
] = −1

γ − d1d2 < N < γ ⇒ [
N − γ

2d1d2
] = −1, δ − d1d2 < N ≤ δ⇒ [

N − δ

2d1d2
] = −1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α 1 0
β β β 0 −1
γ 0 0 0 1
δ δ δ 0 1

Total 1 1

Table 28 - Case 4B: β > N,N − α = l, l < d1d2, α odd, α < β,N − β < d1d2
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Case 5: N − α = d1d2

We must have α odd since N is even and d1d2 is odd. So γ = α + d1d2 and δ = β.
There are two options for β, β > α or β < α.

Case 5A: N − α = d1d2, β < α so N − β > d1d2,
We have the SR values in the Table from the chain,

β = δ < α = γ − d1d2 < β + d1d2 = δ + d1d2 < N = α + d1d2 = γ < β + 2d1d2 = δ + 2d1d2

and,

[
N − α

d1d2
] = 1, β + d1d2 < N < β + 2d1d2⇒ [

N − β

d1d2
] = 1

[
N − γ

2d1d2
] = [

N −N

2d1d2
] = 0, δ + d1d2 < N < δ + 2d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 2 2

Table 29 - Case 5A: N − α = d1d2, β < α

Case 5B: N − α = d1d2, β > α so N − β < d1d2.
We have,

α < β = δ < N = α + d1d2 = γ < β + d1d2 = δ + d1d2

[
N − α

d1d2
] = 1, β < N < β + d1d2⇒ [

N − β

d1d2
] = 0

[
N − γ

2d1d2
] = [

N −N

2d1d2
] = 0, δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β 1 0
γ γ γ −1 0
δ δ δ −1 0

Total 1 1

Table 27 - Case 5B: N − α = d1d2, β > α
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Case 6: N − α = d1d2 + l, l < d1d2, α even, α > β

There are two options for β since α − β ≤ d1d2 − l and α − β ≥ d1d2 − l can both
be true. So both β + 2d1d2 ≥ N = α + d1d2 + l and β + 2d1d2 ≤ N = α + d1d2 + l can be
true.

Case 6A: N − α = d1d2 + l, l < d1d2, α even, α > β, β + 2d1d2 ≤ N
We have,

β < α = γ < β + d1d2 = δ < α + d1d2 = γ + d1d2 < β + 2d1d2 = δ + d1d2 ≤ N = α + d1d2 + l

< α + 2d1d2 = γ + 2d1d2 < β + 3d1d2 = δ + 2d1d2

[
N − α

d1d2
] = [

d1d2 + l

d1d2
] = 1, β + 2d1d2 < N < β + 3d1d2⇒ [

N − β

d1d2
] = 2

[
N − γ

2d1d2
] = [

d1d2 + l

2d1d2
] = 0, δ + d1d2 < N < δ + 2d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + 2d1d2 3 2
γ γ γ −1 0
δ δ δ −1 0

Total 3 3

Table 30 - Case 6A: N − α = d1d2 + l, α even, α > β, β + 2d1d2 ≤ N.

Case 6B: N − α = d1d2 + l, l < d1d2, α even, α > β, β + 2d1d2 ≥ N.
We have,

β < α = γ < β + d1d2 = δ < α + d1d2 = γ + d1d2 < N

≤ β + 2d1d2 = δ + d1d2 < α + 2d1d2 = γ + 2d1d2 < δ + 2d1d2

[
N − α

d1d2
] = [

d1d2 + l

d1d2
] = 1, β + d1d2 < N < β + 2d1d2⇒ [

N − β

d1d2
] = 1

[
N − γ

2d1d2
] = [

d1d2 + l

2d1d2
] = 0, δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 2 2

Table 31 - Case 6B: N − α = d1d2 + l, α even, α > β, β + 2d1d2 ≥ N

Case 7: N − α = d1d2 + l, l < d1d2, α even, α < β

There are two options for β since β − α ≤ d1d2 − l and β − α ≥ d1d2 − l can both
be true. Acccordingly N ≤ β + d1d2 or N ≥ β + d1d2.

Case 7A: N − α = d1d2 + l, l < d1d2, α even, α < β, N − β ≤ d1d2
We have,

α = γ < β = δ − d1d2 < α + d1d2 = γ + d1d2 < N = α + d1d2 + l ≤ β + d1d2 = δ

[
N − α

d1d2
] = [

d1d2 + l

d1d2
] = 1, β < N < β + d1d2⇒ [

N − β

d1d2
] = 0

[
N − γ

2d1d2
] = [

d1d2 + l

2d1d2
] = 0, δ − d1d2 < N < δ⇒ [

N − δ

2d1d2
] = −1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β 1 0
γ γ γ −1 0
δ 0 0 0 1

Total 2 2

Table 32 - Case 7A: N − α = d1d2 + l, α even, α < β, N − β ≤ d1d2

Case 7B: N − α = d1d2 + l, l < d1d2, α even, α < β, N − β ≥ d1d2
We have,

α = γ < β < α + d1d2 = γ + d1d2 < β + d1d2 = δ ≤ N = α + d1d2 + l

< α + 2d1d2 = γ + 2d1d2 < β + 2d1d2 = δ + d1d2
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α + d1d2 ≤ N < α + 2d1d2⇒ [
N − α

d1d2
] = 1, β + d1d2 < N < β + 2d1d2⇒ [

N − β

d1d2
] = 1

γ + d1d2 ≤ N < γ + 2d1d2⇒ [
N − γ

2d1d2
] = 0, δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 2 2

Table 33 - Case 7B: N − α = d1d2 + l, α even, α < β, N − β ≥ d1d2

Case 8: N − α = d1d2 + l, l < d1d2, α > β,α odd.

As for Case 6, there are two options for β.
Case 8A: N − α = d1d2 + l, l < d1d2, α > β,α odd, β + 2d1d2 ≤ N.
We have,

β = δ < α < β + d1d2 < α + d1d2 = γ < β + 2d1d2 = δ + 2d1d2 ≤ N = α + d1d2 + l

< α + 2d1d2 = γ + d1d2 < β + 3d1d2 = δ + 3d1d2

α + d1d2 ≤ N < α + 2d1d2⇒ [
N − α

d1d2
] = 1, β + 2d1d2 ≤ N < β + 3d1d2⇒ [

N − β

d1d2
] = 2

γ < N < γ + d1d2⇒ [
N − γ

2d1d2
] = 0, δ + 2d1d2 < N < δ + 3d1d2⇒ [

N − δ

2d1d2
] = 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + 2d1d2 3 2
γ γ γ −1 0
δ δ δ + 2d1d2 −2 −1

Total 2 2

Table 34 - Case 8A: N − α = d1d2 + l, β + 2d1d2 ≤ N, α > β, α odd

Case 8B: N − α = d1d2 + l, l < d1d2, α > β,α odd,β + 2d1d2 ≥ N.
We have,

β = δ < α < β + d1d2 < α + d1d2 = γ

≤ N = α + d1d2 + l < α + 2d1d2 = γ + d1d2 < β + 2d1d2 = δ + 2d1d2
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α + d1d2 ≤ N < α + 2d1d2⇒ [
N − α

d1d2
] = 1, β + d1d2 < N < β + 2d1d2⇒ [

N − β

d1d2
] = 1

γ < N < γ + d1d2⇒ [
N − γ

2d1d2
] = 0, δ + d1d2 < N < δ + 2d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 2 2

Table 35 - Case 8B: N − α = d1d2 + l, α > β, α even, β + 2d1d2 ≥ N.

Case 9: N − α = d1d2 + l, l < d1d2, α < β, α odd.

As in Cases 6, 7 and 8, there are two options for β.

Case 9A: N − α = d1d2 + l, l < d1d2, α < β, α odd, N − β ≤ d1d2
We have,

α < β = δ < α + d1d2 = γ < N = α + d1d2 + l = γ + l < β + d1d2 = δ + d1d2.

α + d1d2 ≤ N < α + 2d1d2⇒ [
N − α

d1d2
] = 1, β < N < β + d1d2⇒ [

N − β

d1d2
] = 0

γ ≤ N < γ + l⇒ [
N − γ

2d1d2
] = 0, δ < N < δ + d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β 1 0
γ γ γ −1 0
δ δ δ −1 0

Total 1 1

Table 36 - Case 9A: N − α = d1d2 + l, N − β ≤ d1d2, α < β,α odd

Case 9B: N − α = d1d2 + l, l < d1d2, α < β, α odd, N − β ≥ d1d2
We have,

α < β = δ < α + d1d2 = γ < β + d1d2 = δ + d1d2 < N = α + d1d2 + l

< α + 2d1d2 = γ + d1d2 < β + 2d1d2 = δ + 2d1d2
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α + d1d2 ≤ N < α + 2d1d2⇒ [
N − α

d1d2
] = 1, β + d1d2 < N < β + 2d1d2⇒ [

N − β

d1d2
] = 1

γ ≤ N < γ + d1d2⇒ [
N − γ

2d1d2
] = 0, δ + d1d2 < N < δ + 2d1d2⇒ [

N − δ

2d1d2
] = 0

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + d1d2 2 1
β β β + d1d2 2 1
γ γ γ −1 0
δ δ δ −1 0

Total 2 2

Table 37 - Case 9B: N − α = d1d2 + l, N − β ≥ d1d2, α < β,α odd

Case 10: N − α = 2kd1d2, α even, α > β, k ≥ 1
We have,

β < α = γ < β + d1d2 = δ < α + d1d2 . . .

< β + 2kd1d2 = δ + (2k − 1)d1d2 < α + 2kd1d2 = γ + 2kd1d2 = N

< β + (2k + 1)d1d2 = δ + 2kd1d2 < α + (2k + 1)d1d2 = γ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2
d1d2

] = 2k, β + 2kd1d2 < N < β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

[
N − γ

2d1d2
] = k, δ + (2k − 1)d1d2 < N < δ + 2kd1d2⇒ [

N − δ

2d1d2
] = k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + 2kd1d2 2k + 1 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k + 1 2k + 1

Table 38 - Case 10: N − α = 2kd1d2, α even, α > β k ≥ 1

Case 11: N − α = 2kd1d2, α even, α < β, k > 1.
We have,

α = γ < β < α + d1d2 = γ + d1d2 < β + d1d2 = δ . . .

< α + (2k − 1)d1d2 < β + (2k − 1)d1d2 = δ + (k − 1)2d1d2 . . .

< α + 2kd1d2 = γ + 2kd1d2 = N < β + 2kd1d2 = δ + (2k − 1)d1d2
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N − α = 2kd1d2⇒ [
N − α

d1d2
] = 2k,

β + (2k − 1)d1d2 < N < β + 2kd1d2⇒ [
N − β

d1d2
] = 2k − 1

N − γ = 2kd1d2⇒ [
N − γ

2d1d2
] = k,

δ + (k − 1)2d1d2 < N < δ + (2k − 1)d1d2⇒ [
N − δ

2d1d2
] = k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + (2k − 1)d1d2 2k 2k − 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k 2k

Table 39 - Case 11: N − α = 2kd1d2, α even, α < β, k ≥ 1.

Case 12: N − α = 2kd1d2 + l, l < d1d2, α even, α > β, k ≥ 1
We can have β + 2kd1d2 + d1d2 ≤ α + 2kd1d2 + l = N since then α − β ≥ d1d2 − l which
can be true, but we can also have N = α + 2kd1d2 + l ≤ β + (2k + 1)d1d2 from which
α − β ≤ d1d2 − l, which can also be true. So there are two options for the position of
the final entry on the β line.

Case 12A: N − α = 2kd1d2 + l, l < d1d2, α even, α > β, β + (2k + 1)d1d2 ≤ N
We have,

β < α = γ < β + d1d2 = δ . . .

β + 2kd1d2 < α + 2kd1d2 = γ + 2kd1d2 < β + (2k + 1)d1d2 = δ + 2kd1d2 ≤ N

= α + 2kd1d2 + l < α + 2kd1d2 + d1d2 = γ + (2k + 1)d1d2

< β + (2k + 2)d1d2 = δ + (2k + 1)d1d2

α + 2kd1d2 < N < α + (2k + 1)d1d2⇒ [
N − α

d1d2
] = 2k,

β + (2k + 1)d1d2 ≤ N < β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k + 1

γ + 2kd1d2 < N < γ + (2k + 1)d1d2⇒ [
N − γ

2d1d2
] = k,

δ + 2kd1d2 ≤ N < δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + (2k + 1)d1d2 2k + 2 2k + 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 1 2k + 1

Table 40 - Case 12A: N − α = 2kd1d2 + l, α even,α > β, β + (2k + 1)d1d2 ≤ N

Case 12B: N − α = 2kd1d2 + l, l < d1d2, α even,α > β, β + (2k + 1)d1d2 ≥ N.
We have,

β < α = γ < β + d1d2 = δ . . .

< β + (2k − 1)d1d2 = δ + (k − 1)2d1d2 < α + (2k − 1)d1d2 = γ + (2k − 1)d1d2

< β + 2kd1d2 = δ + (2k − 1)d1d2 < α + 2kd1d2 = γ + 2kd1d2

< N = α + 2kd1d2 + l ≤ β + (2k + 1)d1d2 = δ + 2kd1d2

< α + (2k + 1)d1d2 = γ + (2k + 1)d1d2

α + 2kd1d2 < N < α + (2k + 1)d1d2⇒ [
N − α

d1d2
] = 2k,

β + 2kd1d2 < N ≤ β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

γ + 2kd1d2 < N < γ + (2k + 1)d1d2⇒ [
N − γ

2d1d2
] = k,

δ + (2k − 1)d1d2 < N ≤ δ + 2kd1d2⇒ [
N − δ

2d1d2
] = k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + 2kd1d2 2k + 1 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k + 1 2k + 1

Table 41 - Case 12B: N − α = 2kd1d2 + l, α even, α > β, β + (2k + 2)d1d2 ≥ N

Case 13: N − α = 2kd1d2 + l, l < d1d2, α even, α < β,
Since β − α < l and β − α ≥ l are both possible, there are two options for the
final entry on the β row.



46 Chapter 3. Counting Theorem

Case 13A: N − α = 2kd1d2 + l, l < d1d2, α even, α > β, β + 2kd1d2 ≤ N
We have,

α = γ < β < α + d1d2 < β + d1d2 = δ . . .

β + (2k − 1)d1d2 < δ + (k − 1)2d1d2 < α + 2kd1d2 = γ + 2kd1d2

< β + 2kd1d2 = δ + (2k − 1)d1d2 ≤ N = α + 2kd1d2 + l < α + (2k + 1)d1d2

= γ + (2k + 1)d1d2 < β + (2k + 1)d1d2 = δ + 2kd1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k, [

N − γ

2d1d2
] = [

2kd1d2 + l

2kd1d2
] = k

β + 2kd1d2 ≤ N < β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

δ + (2k − 1)d1d2 ≤ N < δ + 2kd1d2⇒ [
N − δ

2d1d2
] = k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + 2kd1d2 2k + 1 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k + 1 2k + 1

Table 42 - Case 13A: N − α = 2kd1d2 + l, α even, α < β, β + 2kd1d2 ≤ N

Case 13B: N − α = 2kd1d2 + l, l < d1d2, α even, α > β, β + 2kd1d2 ≥ N
We have,

α = γ < β < α + d1d2 < β + d1d2 = δ . . .

< α + (2k − 1)d1d2 < β + (2k − 1)d1d2 = δ + (k − 1)2d1d2

< α + 2kd1d2 = γ + 2kd1d2 < N = α + 2kd1d2 + l ≤ β + 2kd1d2

= δ + (2k − 1)d1d2 < α + (2k + 1)d1d2 = γ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k, [

N − γ

2d1d2
] = [

2kd1d2 + l

2kd1d2
] = k

β + (2k − 1)d1d2 < N < β + 2kd1d2⇒ [
N − β

d1d2
] = 2k − 1

δ + (k − 1)2d1d2 < N < δ + (2k − 1)d1d2⇒ [
N − δ

2d1d2
] = k − 1
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + (2k − 1)d1d2 2k 2k − 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k 2k

Table 43 - Case 13B: N − α = 2kd1d2 + l, α even, α < β, β + 2kd1d2 ≥ N

Case 14: N − α = 2kd1d2 + l, l < d1d2, α odd, α > β
As for Case 13 we have two options on the β row.

Case 14A: N − α = 2kd1d2 + l, l < d1d2, α odd, α > β, β + (2k + 1)d1d2 ≤ N
We have,

β = δ < α < β + d1d2 < α + d1d2 = γ . . .

< α + (2k − 1)d1d2 = γ + (k − 1)2d1d2 < β + 2kd1d2 = δ + 2kd1d2

< α + 2kd1d2 = γ + (2k − 1)d1d2 < β + (2k + 1)d1d2

= δ + (2k + 1)d1d2 ≤ N = α + 2kd1d2 + l < α + (2k + 1)d1d2

= γ + 2kd1d2 < β + (2k + 2)d1d2 = δ + (k + 1)2d1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k

[
N − γ

2d1d2
] = [

N − α − d1d2
2d1d2

] = [
2kd1d2 + l − d1d2

2d1d2
] = k − 1

β + (2k + 1)d1d2 ≤ N < β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k + 1

δ + (2k + 1)d1d2 ≤ N < δ + (2k + 2)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + (2k + 1)d1d2 2k + 2 2k + 1
γ γ γ + (k − 1)2d1d2 −k −(k − 1)
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 2 2k + 2

Table 44 - Case 14A: N − α = 2kd1d2 + l, l < d1d2, α odd, α > β, β + (2k + 1)d1d2 ≤ N

Case 14B: N − α = 2kd1d2 + l, l < d1d2, α odd, α > β, β + (2k + 1)d1d2 ≥ N
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β = δ < α < β + d1d2 < α + d1d2 . . .

< α + (2k − 1)d1d2 = γ + (k − 1)2d1d2 < β + 2kd1d2 = δ + 2kd1d2

< α + 2kd1d2 < N = α + 2kd1d2 + l ≤ β + (2k + 1)d1d2 = δ + (2k + 1)d1d2

< α + (2k + 1)d1d2 = γ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k

[
N − γ

2d1d2
] = [

N − α − d1d2
2d1d2

] = [
2kd1d2 + l − d1d2

2d1d2
] = k − 1

β + 2kd1d2 < N < β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

δ + 2kd1d2 < N < δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + 2kd1d2 2k + 1 2k
γ γ γ + (k − 1)2d1d2 −k −(k − 1)
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 1 2k + 1

Table 45 - Case 14B:N − α = 2kd1d2 + l, l < d1d2, α odd, α > β, β + (2k + 1)d1d2 ≥ N

Case 15: N − α = 2kd1d2 + l, l < d1d2, α odd, β > α
We have two possibilities for the last entry on the β row.

Case 15A: N − α = 2kd1d2 + l, l < d1d2, α odd, β > α, β + 2kd1d2 ≤ N.
We have,

α < β = δ < α + d1d2 = γ < . . .

< α + (2k − 1)d1d2 = γ + (k − 1)2d1d2 < β + (2k − 1)d1d2 < α + 2kd1d2

= γ + (2k − 1)d1d2 < β + 2kd1d2 = δ + 2kd1d2 ≤ N = α + 2kd1d2 + l

< α + (2k + 1)d1d2 = γ + 2kd1d2 < β + (2k + 1)d1d2 = δ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k [

N − γ

2d1d2
] = [

2kd1d2 + l − d1d2
2d1d2

] = k − 1

β + 2kd1d2 < N < β + (2k + 1)d1d2⇒ [
N − β

d1d2
]2k

δ + 2kd1d2 < N < δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k



3.3. Main Counting Theorem 49

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + 2kd1d2 2k + 1 2k
γ γ γ + (k − 1)2d1d2 −k −(k − 1)
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 1 2k + 1

Table 46 - Case 15A: N − α = 2kd1d2 + l, l < d1d2, α odd, β > α, β + 2kd1d2 ≤ N

Case 15B: N − α = 2kd1d2 + l, l < d1d2, α odd, β > α, N ≤ β + 2kd1d2
We have,

α < β = δ < α + d1d2 = γ . . .

< β + (2k − 2)d1d2 = δ + (k − 1)2d1d2 < α + (2k − 1)d1d2

= γ + (k − 1)2d1d2 < β + (2k − 1)d1d2 = δ + (2k − 1)d1d2

< α + 2kd1d2 < N ≤ β + 2kd1d2 = δ + 2kd1d2

[
N − α

d1d2
] = [

2kd1d2 + l

d1d2
] = 2k, [

N − γ

2d1d2
] = [

2kd1d2 + l − d1d2
2d1d2

] = k − 1

β + (2k − 1)d1d2 < N ≤ β + 2kd1d2⇒ [
N − β

d1d2
] = 2k − 1

δ + (2k − 1)d1d2 < N ≤ δ + 2kd1d2⇒ [
N − δ

2d1d2
]k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 2k + 1 2k
β β β + (2k − 1)d1d2 2k 2k − 1
γ γ γ + (k − 1)2d1d2 −k −(k − 1)
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k + 1 2k + 1

Table 47 - Case 15B: N − α = 2kd1d2 + l, l < d1d2, α odd, β > α, β + 2kd1d2 ≥ N

Case 16: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, α > β

Now β + 2kd1d2 + 2d1d2 < N = α + 2kd1d2 + d1d2 + l ⇒ α − β > d1d2 − l which can
be true.
But we can also have N = α + 2kd1d2 + d1d2 + l < β + 2kd1d2 + 2d1d2⇒ α − β < d1d2 − l
which can also be true.
There are therefore two possibilities for the last β line entry.
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Case 16A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, α > β, β + 2kd1d2 + 2d1d2 ≤ N.
We have,

β < α = γ < β + d1d2 = δ < . . .

α + 2kd1d2 = γ + 2kd1d2 < β + 2d1d2 + d1d2 = δ + 2kd1d2

< α + 2kd1d2 + d1d2 < β + 2kd1d2 + 2d1d2 = δ + 2kd1d2 + d1d2

≤ N = α + 2kd1d2 + d1d2 + l < β + (2k + 3)d1d2 = δ + (2k + 2)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

2d1d2
] = [

2kd1d2 + d1d2 + l

2d1d2
] = k.

β + (2k + 2)d1d2 ≤ N < β + (2k + 3)d1d2⇒ [
N − β

d1d2
] = 2k + 2

δ + (2k + 1)d1d2 < N < δ + (2k + 2)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + 2d1d2 2k + 3 2k + 2
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 3 2k + 3

Table 48 - Case 16A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, α > β, β + 2kd1d2 + d1d2 ≤ N

Case 16B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, α > β, N ≤ β + 2kd1d2 + 2d1d2
We have,

β < α < β + d1d2 = δ . . .

< α + 2kd1d2 = γ + 2kd1d2 < β + 2kd1d2 + d1d2 = δ + 2kd1d2 < α + 2kd1d2 + d1d2

= γ + 2kd1d2 + d1d2 < N = α + 2kd1d2 + l ≤ β + 2kd1d2 + 2d1d2 = δ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

2d1d2
] = [

N − α

2d1d2
] = k.

β + (2k + 1)d1d2 < N ≤ β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k.

δ + 2kd1d2 < N ≤ δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k − 1
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + d1d2 2k + 2 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −(k − 1)

Total 2k + 2 2k + 2

Table 49 - Case 16B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, α > β, N ≤ β + 2kd1d2 + 2d1d2

Case 17: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, β > α
There are two possibilites for the last entry on the β row.

Case 17A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, β > α,
β + 2kd1d2 + d1d2 ≤ N.
We have,

α = γ < β < α + d1d2 = γ + d1d2 < β + d1d2 = δ . . .

< α + 2kd1d2 = γ + 2kd1d2 < β + 2kd1d2 = δ + (2k − 1) < α + 2kd1d2 + d1d2

< β + 2kd1d2 + d1d2 = δ + 2kd1d2 ≤ N = α + 2kd1d2 + d1d2 + l

< β + (2k + 2)d1d2 = δ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

2d1d2
] = [

N − α

2d1d2
] = k.

β + (2k + 1)d1d2 ≤ N < β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k + 1

δ + 2kd1d2 ≤ N < δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + d1d2 2k + 2 2k + 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 2 2k + 2

Table 50 - Case 17A: N − α = 2kd1d2 + d1d2 + l, α even, β > α, β + 2kd1d2 + d1d2 ≤ N.

Case 17B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α even, β > α,β + (2k + 1)d1d2 ≥ N.
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We have,

α = γ < β < α + d1d2 < β + d1d2 = δ . . .

< β + (2k − 1)d1d2 = δ + (k − 1)2d1d2 < α + 2kd1d2 = γ + 2kd1d2

< β + 2kd1d2 = δ + (2k − 1)d1d2 < α + 2kd1d2 + d1d2

= γ + (2k + 1)d1d2 ≤ N = α + 2kd1d2 + d1d2 + l

≤ β + 2kd1d2 + d1d2 = δ + 2kd1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

2d1d2
] = [

2kd1d2 + d1d2 + l

2d1d2
] = k

β + 2kd1d2 < N ≤ β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

δ + (2k − 1)d1d2 < N ≤ δ + 2kd1d2⇒ [
N − δ

2d1d2
] = k − 1

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 2k + 1 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + (k − 1)2d1d2 −k −(k − 1)

Total 2k + 2 2k + 2

Table 51 - Case 17B: β + 2kd1d2 + d1d2 ≥ N.

Case 18: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd,α > β
There are two possibilities for the last entry on the β row.

Case 18A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, α > β, β + 2kd1d2 + 2d1d2 ≤ N.
We have,

β = δ < α < β + d1d2 < α + d1d2 = γ . . .

< α + 2kd1d2 + d1d2 = γ + 2kd1d2 < β + 2kd1d2 + 2d1d1

= δ + 2kd1d2 + 2d1d2 ≤ N < β + (2k + 3)d1d2 = δ + (2k + 3)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

d1d2
] = [

2kd1d2 + l

2d1d2
] = k

β + (2k + 2)d1d2 ≤ N < β + (2k + 3)d1d2⇒ [
N − β

d1d2
] = 2k + 2

δ + (k + 1)2d1d2 ≤ N < δ + (2k + 3)d1d2⇒ [
N − δ

2d1d2
] = k + 1
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + 2d1d2 2k + 3 2k + 2
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 + 2d1d2 −(k + 2) −(k + 1)

Total 2k + 2 2k + 2

Table 52 - Case 18A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd,α > β, β + 2kd1d2 + d1d2 ≤ N.

Case 18B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, α > β, β + 2kd1d2 + 2d1d2 ≥ N.
We have,

β = δ < α < β + d1d2 < α + d1d2 = γ . . .

< β + 2kd1d2 = δ + 2kd1d2 < α + 2kd1d2 < β + 2kd1d2 + d1d2

= δ + 2kd1d2 + d1d2 < α + 2kd1d2 + d1d2 = γ + 2kd1d2

< N ≤ β + (2k + 2)d1d2 = δ + (2k + 2)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

d1d2
] = [

2kd1d2 + l

2d1d2
] = k

β + (2k + 1)d1d2 < N ≤ β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k + 1

δ + (2k + 1)d1d2 < N ≤ δ + (2k + 2)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + d1d2 2k + 2 2k + 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 2 2k + 2

Table 53 - Case 18B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, α > β, β + 2kd1d2 + d1d2 ≥ N.

Case 19: N − α = 2kd1d2 + d1d2 + l, α odd, β > α
There are two possibilities for the β line.

Case 19A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, β > α, β + 2kd1d2 + d1d2 ≤ N
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We have,

α < β = δ < α + d1d2 = γ . . .

< β + 2kd1d2 = δ + 2kd1d2 < α + 2kd1d2 + d1d2 = γ + 2kd1d2

< β + 2kd1d2 + d1d2 ≤ N = α + 2kd1d2 + d1d2 + l

< β + (2k + 2)d1d2 = δ + (2k + 2)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1

[
N − γ

2d1d2
] = [

2kd1d2 + l

2d1d2
] = k

β + (2k + 1)d1d2 < N < β + (2k + 2)d1d2⇒ [
N − β

d1d2
] = 2k + 1

δ + (2k + 1)d1d2 < N < δ + (2k + 2)d1d2⇒ [
N − δ

2d1d2
] = k

x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 + d1d2 2k + 2 2k + 1
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 2 2k + 2

Table 54 - Case 19A: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, α > β, β + 2kd1d2 + d1d2 ≤ N

Case 19B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, β > α, N ≤ β + 2kd1d2 + d1d2
We have,

α < β = δ < α + d1d2 = γ . . .

< β + 2kd1d2 = δ + 2kd1d2 < α + 2kd1d2 + d1d1 = γ + 2kd1d2

≤ N ≤ β + (2k + 1)d1d2 = δ + (2k + 1)d1d2

[
N − α

d1d2
] = [

2kd1d2 + d1d2 + l

d1d2
] = 2k + 1, [

N − γ

2d1d2
] = [

2kd1d2 + l

2d1d2
] = k

β + 2kd1d2 < N ≤ β + (2k + 1)d1d2⇒ [
N − β

d1d2
] = 2k

δ + 2kd1d2 < N ≤ δ + (2k + 1)d1d2⇒ [
N − δ

2d1d2
] = k
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x1 First entry Last entry SR µ(d1d2) [
N − x1
d1d2

] µ(2d1d2) [
N − x1
2d1d2

]

α α α + 2kd1d2 + d1d2 2k + 2 2k + 1
β β β + 2kd1d2 2k + 1 2k
γ γ γ + 2kd1d2 −(k + 1) −k
δ δ δ + 2kd1d2 −(k + 1) −k

Total 2k + 1 2k + 1

Table 55 - Case 19B: N − α = 2kd1d2 + d1d2 + l, l < d1d2, α odd, α < β, β + 2kd1d2 + d1d2 ≥ N.

In all quartets where α > N, the four SR sums add to the same value as the two

µ(d1d2) [
N − x1
d1d2

] values and the two µ(2d1d2) [
N − x1
2d1d2

] values.

Our Counting Theorem is proved.

3.3.6 Conclusion

Lemmas 7, 8, 9, 10 and 11 have proved that the four SR sums of all possible quar-
tets in an expanded Table 4 have the same total value as that of the four respective

µ(d1d2) [
N − x1
d1d2

] values so, for each value of d1d2, we can replace one with the other.

Since the sum of all the SR values is a count of the number of the upper twin
primes less than N where N is in the interval (pθ, p2θ+1) we have proved,

Theorem 12. In the primod-pθ number system, the number of primods less than an
even integer N with no p-digits equal to 0 or 2(mod p) is given by:

T (pθ,N,2) =
∗
∑µ(d1d2) [

N − x1
d1d2

]

where
∗
∑ is a sum with,

(a) pθ is the largest prime less than
√
N

(b) d1 is the product of one or more elements of the set {2,3, . . . , pθ} ∪ {1} , where
2,3, . . . pθ are consecutive primes

(c) d2 is the product of one or more elements of the set {3, . . . , pθ} ∪ {1} so that
(d2,2) = 1.

(d) (d1, d2) = 1

(e) the sum is over all possible values of d1 and d2,

(f) µ is the Möbius function and [x] the greatest integer function



56 Chapter 3. Counting Theorem

(g) x1 is the least non negative solution of the system of equations

x ≡ 0(mod d1), x ≡ 2(mod d2)

Equivalently we have proved the number of upper primes of a twin prime pair
between pθ and N is given by T (pθ,N,2) as defined in the above theorem.



Chapter 4

The Twin Primes Theorem

We have,

T (pθ,N,2) =
∗
∑µ(d1d2) [

N − x1
d1d2

]

=
∗
∑µ(d1d2) (

N − x1 − x2
d1d2

)

where x1 is the least non-negative solution of the system of linear congruences,

x ≡ 0(mod d1) and x ≡ 2(mod d2)

and x2 is the least non-negative solution of the linear congruence,

x2 ≡ (N − x1)(mod d1d2)

Lemma 13.
x2 is the least non-negative solution of the system of linear congruences,

x ≡ N(mod d1) and x ≡ (N − 2)(mod d2)

Proof.

x2 ≡ (N − x1)(mod d1d2)⇒ x2 = N − x1 + kd1d2, k ∈ Z

But also,

x1 ≡ 0(mod d1)⇒ x1 = ad1, a ∈ Z
⇒ x2 = N − ad1 + kd1d2

⇒ x2 ≡ N(mod d1)

Then x2 = N − x1 + kd1d2⇒ x1 = N − x2 + kd1d2 gives,

x1 ≡ (N − x2)(mod d1d2) and also x1 ≡ 2(mod d2)

⇒ 2 + ad2 = N − x2 + kd1d2, a, k ∈ Z
⇒ x2 ≡ (N − 2)(mod d2)

57



58 Chapter 4. The Twin Primes Theorem

So x2 is the solution of the pair of linear congruences,

x ≡ N(mod d1) and x ≡ (N − 2)(mod d2)

Since x2 < d1d2 then x2 is the least non-negative solution of these two congruences.

Note this means x2 values can be viewed as independent of the x1 values, depend-
ing only on N and the sieving primes.

Theorem 14. Twin Primes Theorem
There are an infinite number of twin prime pairs.

Proof. Suppose (p, q) is the largest twin prime pair with q−p = 2 and p, q both primes.
Suppose r is the next highest prime. r exists because there are an infinite number
of primes and indeed, by Bertrand’s Postulate, r lies between q and 2q. Note, given
the value of the largest known twin prime pair, r2 − q2 = (r + q)(r − q) is a very large
number.
Choose N = q2 + 1 and N = r2 − 1.
Then q is the largest prime less than the square root of both q2 + 1 and r2 − 1.
Hence, using Theorem 12, and noting 1 is always counted,

T (q, q2 + 1,2) =
∗
∑µ(d1d2)

q2 + 1 − x1 − x2
d1d2

= 1 (4.0.1)

where x1 is the least non-negative solution of the system of congruences

x1 ≡ 0(mod d1) and x1 ≡ 2(mod d2) (4.0.2)

and x2 is the least non-negative solution of the system of congruences

x2 ≡ q
2 + 1(mod d1) and x2 ≡ q

2 − 1(mod d2)

Also, again using Theorem 12,

T (q, r2 − 1,2) =
∗
∑µ(d1d2)

r2 − 1 − x1 − x2
d1d2

= 1 (4.0.3)

where x1 is the least non-negative solution of the system of congruences

x1 ≡ 0(mod d1) and x1 ≡ 2(mod d2) (4.0.4)

and x2 is the least non-negative solution of the system of congruences

x ≡ r2 − 1(mod d1) and x ≡ r2 − 3(mod d2)

Subtracting (4.0.3) - (4.0.1) gives,

∗
∑µ(d1d2)

r2 − q2 − 2 + x1 − x1 + x2 − x2
d1d2

= 0 (4.0.5)
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By (4.0.2) and (4.0.4) we have x1 = x1 for each respective d1d2, so we have from
(4.0.5),

x2 − x2 = r
2 − q2 − 2 (4.0.6)

for all choices of d1d2. Note r2 − q2 − 2 is a fixed number.
But, by Lemma 13, for each choice of (d1, d2), x2 is the least non-negative solution of
the system,

x2 ≡ r
2 − 1(mod d1), x2 ≡ r

2 − 3(mod d2)

and x2 is the least non-negative solution of the system,

x2 ≡ q
2 + 1(mod d1), x2 ≡ q

2 − 1(mod d2)

Hence, subtracting,

x2 − x2 ≡ r
2 − q2 − 2(mod d1), x2 − x1 ≡ r

2 − q2 − 2(mod d2)

making,

x2 − x2 ≡ r
2 − q2 − 2(mod d1d2) (4.0.7)

Hence it is not possible, as required by (4.0.6), to have x2 − x2 = r2 − q2 − 2 for all
choices of d1d2, for example d1d2 = 3 ∗ 5 where, by (4.0.7), x2 − x2 < 15.
Therefore the assumption (p, q) is the largest twin prime pair is false. We conclude
there are an infinite number of twin prime pairs.


